SHARED MACHINE LEARNING

A network system may include a plurality of trainer devices and a computing system disposed within a remote network management platform. The computing system may be configured to: receive, from a client device of a managed network, information indicating (i) training data that is to be used as basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PALAPUDI, Sriram, BENDRE, Nikhil, JAYARAMAN, Baskar, GOVINDARAJAN, Kannan, THAKUR, Aniruddha, ROS, Fernando, KARAKUSOGLU, Firat
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PALAPUDI, Sriram
BENDRE, Nikhil
JAYARAMAN, Baskar
GOVINDARAJAN, Kannan
THAKUR, Aniruddha
ROS, Fernando
KARAKUSOGLU, Firat
description A network system may include a plurality of trainer devices and a computing system disposed within a remote network management platform. The computing system may be configured to: receive, from a client device of a managed network, information indicating (i) training data that is to be used as basis for generating a machine learning (ML) model and (ii) a target variable to be predicted using the ML model; transmit an ML training request for reception by one of the plurality of trainer devices; provide the training data to a particular trainer device executing a particular ML trainer process that is serving the ML training request; receive, from the particular trainer device, the ML model that is generated based on the provided training data and according to the particular ML trainer process; predict the target variable using the ML model; and transmit, to the client device, information indicating the target variable.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3399431B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3399431B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3399431B13</originalsourceid><addsrcrecordid>eNrjZBAP9nAMcnVR8HV09vD0c1XwcXUM8vP0c-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuAcbGlpYmxoZOhsZEKAEAh4Ae5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SHARED MACHINE LEARNING</title><source>esp@cenet</source><creator>PALAPUDI, Sriram ; BENDRE, Nikhil ; JAYARAMAN, Baskar ; GOVINDARAJAN, Kannan ; THAKUR, Aniruddha ; ROS, Fernando ; KARAKUSOGLU, Firat</creator><creatorcontrib>PALAPUDI, Sriram ; BENDRE, Nikhil ; JAYARAMAN, Baskar ; GOVINDARAJAN, Kannan ; THAKUR, Aniruddha ; ROS, Fernando ; KARAKUSOGLU, Firat</creatorcontrib><description>A network system may include a plurality of trainer devices and a computing system disposed within a remote network management platform. The computing system may be configured to: receive, from a client device of a managed network, information indicating (i) training data that is to be used as basis for generating a machine learning (ML) model and (ii) a target variable to be predicted using the ML model; transmit an ML training request for reception by one of the plurality of trainer devices; provide the training data to a particular trainer device executing a particular ML trainer process that is serving the ML training request; receive, from the particular trainer device, the ML model that is generated based on the provided training data and according to the particular ML trainer process; predict the target variable using the ML model; and transmit, to the client device, information indicating the target variable.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211117&amp;DB=EPODOC&amp;CC=EP&amp;NR=3399431B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211117&amp;DB=EPODOC&amp;CC=EP&amp;NR=3399431B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PALAPUDI, Sriram</creatorcontrib><creatorcontrib>BENDRE, Nikhil</creatorcontrib><creatorcontrib>JAYARAMAN, Baskar</creatorcontrib><creatorcontrib>GOVINDARAJAN, Kannan</creatorcontrib><creatorcontrib>THAKUR, Aniruddha</creatorcontrib><creatorcontrib>ROS, Fernando</creatorcontrib><creatorcontrib>KARAKUSOGLU, Firat</creatorcontrib><title>SHARED MACHINE LEARNING</title><description>A network system may include a plurality of trainer devices and a computing system disposed within a remote network management platform. The computing system may be configured to: receive, from a client device of a managed network, information indicating (i) training data that is to be used as basis for generating a machine learning (ML) model and (ii) a target variable to be predicted using the ML model; transmit an ML training request for reception by one of the plurality of trainer devices; provide the training data to a particular trainer device executing a particular ML trainer process that is serving the ML training request; receive, from the particular trainer device, the ML model that is generated based on the provided training data and according to the particular ML trainer process; predict the target variable using the ML model; and transmit, to the client device, information indicating the target variable.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBAP9nAMcnVR8HV09vD0c1XwcXUM8vP0c-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuAcbGlpYmxoZOhsZEKAEAh4Ae5A</recordid><startdate>20211117</startdate><enddate>20211117</enddate><creator>PALAPUDI, Sriram</creator><creator>BENDRE, Nikhil</creator><creator>JAYARAMAN, Baskar</creator><creator>GOVINDARAJAN, Kannan</creator><creator>THAKUR, Aniruddha</creator><creator>ROS, Fernando</creator><creator>KARAKUSOGLU, Firat</creator><scope>EVB</scope></search><sort><creationdate>20211117</creationdate><title>SHARED MACHINE LEARNING</title><author>PALAPUDI, Sriram ; BENDRE, Nikhil ; JAYARAMAN, Baskar ; GOVINDARAJAN, Kannan ; THAKUR, Aniruddha ; ROS, Fernando ; KARAKUSOGLU, Firat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3399431B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PALAPUDI, Sriram</creatorcontrib><creatorcontrib>BENDRE, Nikhil</creatorcontrib><creatorcontrib>JAYARAMAN, Baskar</creatorcontrib><creatorcontrib>GOVINDARAJAN, Kannan</creatorcontrib><creatorcontrib>THAKUR, Aniruddha</creatorcontrib><creatorcontrib>ROS, Fernando</creatorcontrib><creatorcontrib>KARAKUSOGLU, Firat</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PALAPUDI, Sriram</au><au>BENDRE, Nikhil</au><au>JAYARAMAN, Baskar</au><au>GOVINDARAJAN, Kannan</au><au>THAKUR, Aniruddha</au><au>ROS, Fernando</au><au>KARAKUSOGLU, Firat</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SHARED MACHINE LEARNING</title><date>2021-11-17</date><risdate>2021</risdate><abstract>A network system may include a plurality of trainer devices and a computing system disposed within a remote network management platform. The computing system may be configured to: receive, from a client device of a managed network, information indicating (i) training data that is to be used as basis for generating a machine learning (ML) model and (ii) a target variable to be predicted using the ML model; transmit an ML training request for reception by one of the plurality of trainer devices; provide the training data to a particular trainer device executing a particular ML trainer process that is serving the ML training request; receive, from the particular trainer device, the ML model that is generated based on the provided training data and according to the particular ML trainer process; predict the target variable using the ML model; and transmit, to the client device, information indicating the target variable.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3399431B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title SHARED MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PALAPUDI,%20Sriram&rft.date=2021-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3399431B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true