DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS
In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. Th...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KORTHIKANTI, Vijay Anand R KHOSROWSHAHI, Amir KLOSS, Carey K KALAIAH, Aravind |
description | In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3346392A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3346392A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3346392A13</originalsourceid><addsrcrecordid>eNrjZDB18QwOCfJ0Cg1xdVHwdQQyIxR8Q31CPAN8PJ0dQzz9_RTc_IMU_FxDgxx9gFRIuH-QdzAPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTA2NjEztjRyNDQmQgkA37In0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><source>esp@cenet</source><creator>KORTHIKANTI, Vijay Anand R ; KHOSROWSHAHI, Amir ; KLOSS, Carey K ; KALAIAH, Aravind</creator><creatorcontrib>KORTHIKANTI, Vijay Anand R ; KHOSROWSHAHI, Amir ; KLOSS, Carey K ; KALAIAH, Aravind</creatorcontrib><description>In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180711&DB=EPODOC&CC=EP&NR=3346392A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180711&DB=EPODOC&CC=EP&NR=3346392A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KORTHIKANTI, Vijay Anand R</creatorcontrib><creatorcontrib>KHOSROWSHAHI, Amir</creatorcontrib><creatorcontrib>KLOSS, Carey K</creatorcontrib><creatorcontrib>KALAIAH, Aravind</creatorcontrib><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><description>In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB18QwOCfJ0Cg1xdVHwdQQyIxR8Q31CPAN8PJ0dQzz9_RTc_IMU_FxDgxx9gFRIuH-QdzAPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTA2NjEztjRyNDQmQgkA37In0Q</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>KORTHIKANTI, Vijay Anand R</creator><creator>KHOSROWSHAHI, Amir</creator><creator>KLOSS, Carey K</creator><creator>KALAIAH, Aravind</creator><scope>EVB</scope></search><sort><creationdate>20180711</creationdate><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><author>KORTHIKANTI, Vijay Anand R ; KHOSROWSHAHI, Amir ; KLOSS, Carey K ; KALAIAH, Aravind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3346392A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KORTHIKANTI, Vijay Anand R</creatorcontrib><creatorcontrib>KHOSROWSHAHI, Amir</creatorcontrib><creatorcontrib>KLOSS, Carey K</creatorcontrib><creatorcontrib>KALAIAH, Aravind</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KORTHIKANTI, Vijay Anand R</au><au>KHOSROWSHAHI, Amir</au><au>KLOSS, Carey K</au><au>KALAIAH, Aravind</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><date>2018-07-11</date><risdate>2018</risdate><abstract>In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3346392A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KORTHIKANTI,%20Vijay%20Anand%20R&rft.date=2018-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3346392A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |