DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS

In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KORTHIKANTI, Vijay Anand R, KHOSROWSHAHI, Amir, KLOSS, Carey K, KALAIAH, Aravind
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KORTHIKANTI, Vijay Anand R
KHOSROWSHAHI, Amir
KLOSS, Carey K
KALAIAH, Aravind
description In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3346392A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3346392A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3346392A13</originalsourceid><addsrcrecordid>eNrjZDB18QwOCfJ0Cg1xdVHwdQQyIxR8Q31CPAN8PJ0dQzz9_RTc_IMU_FxDgxx9gFRIuH-QdzAPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTA2NjEztjRyNDQmQgkA37In0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><source>esp@cenet</source><creator>KORTHIKANTI, Vijay Anand R ; KHOSROWSHAHI, Amir ; KLOSS, Carey K ; KALAIAH, Aravind</creator><creatorcontrib>KORTHIKANTI, Vijay Anand R ; KHOSROWSHAHI, Amir ; KLOSS, Carey K ; KALAIAH, Aravind</creatorcontrib><description>In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180711&amp;DB=EPODOC&amp;CC=EP&amp;NR=3346392A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180711&amp;DB=EPODOC&amp;CC=EP&amp;NR=3346392A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KORTHIKANTI, Vijay Anand R</creatorcontrib><creatorcontrib>KHOSROWSHAHI, Amir</creatorcontrib><creatorcontrib>KLOSS, Carey K</creatorcontrib><creatorcontrib>KALAIAH, Aravind</creatorcontrib><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><description>In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB18QwOCfJ0Cg1xdVHwdQQyIxR8Q31CPAN8PJ0dQzz9_RTc_IMU_FxDgxx9gFRIuH-QdzAPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYl3DTA2NjEztjRyNDQmQgkA37In0Q</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>KORTHIKANTI, Vijay Anand R</creator><creator>KHOSROWSHAHI, Amir</creator><creator>KLOSS, Carey K</creator><creator>KALAIAH, Aravind</creator><scope>EVB</scope></search><sort><creationdate>20180711</creationdate><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><author>KORTHIKANTI, Vijay Anand R ; KHOSROWSHAHI, Amir ; KLOSS, Carey K ; KALAIAH, Aravind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3346392A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KORTHIKANTI, Vijay Anand R</creatorcontrib><creatorcontrib>KHOSROWSHAHI, Amir</creatorcontrib><creatorcontrib>KLOSS, Carey K</creatorcontrib><creatorcontrib>KALAIAH, Aravind</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KORTHIKANTI, Vijay Anand R</au><au>KHOSROWSHAHI, Amir</au><au>KLOSS, Carey K</au><au>KALAIAH, Aravind</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS</title><date>2018-07-11</date><risdate>2018</risdate><abstract>In one embodiment, a matrix operation associated with a plurality of input matrices may be performed. The plurality of input matrices may be partitioned into a plurality of input partitions, wherein the plurality of input matrices is partitioned based on a number of available processing elements. The plurality of input partitions may be distributed among a plurality of processing elements, wherein each input partition is distributed to a particular processing element of the plurality of processing elements. A plurality of partial matrix operations may be performed using the plurality of processing elements, and partial matrix data may be transmitted between the plurality of processing elements while performing the plurality of partial matrix operations. A result of the matrix operation may be determined based on the plurality of partial matrix operations.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3346392A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title DISTRIBUTED MATRIX MULTIPLICATION FOR NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KORTHIKANTI,%20Vijay%20Anand%20R&rft.date=2018-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3346392A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true