SYSTEM AND METHOD FOR A MULTI VIEW LEARNING APPROACH TO ANOMALY DETECTION AND ROOT CAUSE ANALYSIS
A system and method for detecting anomalies in a communication network includes detecting first outliers in a first set of quality indicators for a cellular group, detecting second outliers in a second set of performance indicators for the cellular group, correlating the first outliers and the secon...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUN, Yanjia LIU, Ruilin YANG, Kai |
description | A system and method for detecting anomalies in a communication network includes detecting first outliers in a first set of quality indicators for a cellular group, detecting second outliers in a second set of performance indicators for the cellular group, correlating the first outliers and the second outliers to produce an anomaly candidate, determining a confidence threshold for the anomaly candidate, and indicating a network anomaly in response to the confidence threshold exceeding a predetermined threshold. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3342101A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3342101A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3342101A43</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeod5gKCNb3AkE5NoMmUZGrpqhSJK9FCvT8G8QCuPp_3398WcxyjkAP0NTgSwzU0HADB9a1YuFoaoCUM3voLYNcFRm1AOAvssB2hJiEtlv33IjALaOwj5ZpxtHFfbO7zY02HX-4KaEi0OablNaV1mW_pmd4TdUpV5_JUYqX-mHwAJPAy9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR A MULTI VIEW LEARNING APPROACH TO ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><source>esp@cenet</source><creator>SUN, Yanjia ; LIU, Ruilin ; YANG, Kai</creator><creatorcontrib>SUN, Yanjia ; LIU, Ruilin ; YANG, Kai</creatorcontrib><description>A system and method for detecting anomalies in a communication network includes detecting first outliers in a first set of quality indicators for a cellular group, detecting second outliers in a second set of performance indicators for the cellular group, correlating the first outliers and the second outliers to produce an anomaly candidate, determining a confidence threshold for the anomaly candidate, and indicating a network anomaly in response to the confidence threshold exceeding a predetermined threshold.</description><language>eng ; fre ; ger</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180912&DB=EPODOC&CC=EP&NR=3342101A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180912&DB=EPODOC&CC=EP&NR=3342101A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN, Yanjia</creatorcontrib><creatorcontrib>LIU, Ruilin</creatorcontrib><creatorcontrib>YANG, Kai</creatorcontrib><title>SYSTEM AND METHOD FOR A MULTI VIEW LEARNING APPROACH TO ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><description>A system and method for detecting anomalies in a communication network includes detecting first outliers in a first set of quality indicators for a cellular group, detecting second outliers in a second set of performance indicators for the cellular group, correlating the first outliers and the second outliers to produce an anomaly candidate, determining a confidence threshold for the anomaly candidate, and indicating a network anomaly in response to the confidence threshold exceeding a predetermined threshold.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeod5gKCNb3AkE5NoMmUZGrpqhSJK9FCvT8G8QCuPp_3398WcxyjkAP0NTgSwzU0HADB9a1YuFoaoCUM3voLYNcFRm1AOAvssB2hJiEtlv33IjALaOwj5ZpxtHFfbO7zY02HX-4KaEi0OablNaV1mW_pmd4TdUpV5_JUYqX-mHwAJPAy9g</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>SUN, Yanjia</creator><creator>LIU, Ruilin</creator><creator>YANG, Kai</creator><scope>EVB</scope></search><sort><creationdate>20180912</creationdate><title>SYSTEM AND METHOD FOR A MULTI VIEW LEARNING APPROACH TO ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><author>SUN, Yanjia ; LIU, Ruilin ; YANG, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3342101A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2018</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN, Yanjia</creatorcontrib><creatorcontrib>LIU, Ruilin</creatorcontrib><creatorcontrib>YANG, Kai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN, Yanjia</au><au>LIU, Ruilin</au><au>YANG, Kai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR A MULTI VIEW LEARNING APPROACH TO ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><date>2018-09-12</date><risdate>2018</risdate><abstract>A system and method for detecting anomalies in a communication network includes detecting first outliers in a first set of quality indicators for a cellular group, detecting second outliers in a second set of performance indicators for the cellular group, correlating the first outliers and the second outliers to produce an anomaly candidate, determining a confidence threshold for the anomaly candidate, and indicating a network anomaly in response to the confidence threshold exceeding a predetermined threshold.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3342101A4 |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION WIRELESS COMMUNICATIONS NETWORKS |
title | SYSTEM AND METHOD FOR A MULTI VIEW LEARNING APPROACH TO ANOMALY DETECTION AND ROOT CAUSE ANALYSIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN,%20Yanjia&rft.date=2018-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3342101A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |