OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING

A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KHIBNIK, Alexander I, LIN, Yiquing, HAGEN, Gregory S, GIERING, Michael J, ERDINC, Ozgur
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KHIBNIK, Alexander I
LIN, Yiquing
HAGEN, Gregory S
GIERING, Michael J
ERDINC, Ozgur
description A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3312604B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3312604B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3312604B13</originalsourceid><addsrcrecordid>eNrjZDDy9_RRcHF1CvIMVvD19_MM8Q_y9HNX0PB38dVUCPcM8VBwdHEMCPEMc1XwcXUM8gNK8jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY2NDIzMDEydDYyKUAAAMrCYX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><source>esp@cenet</source><creator>KHIBNIK, Alexander I ; LIN, Yiquing ; HAGEN, Gregory S ; GIERING, Michael J ; ERDINC, Ozgur</creator><creatorcontrib>KHIBNIK, Alexander I ; LIN, Yiquing ; HAGEN, Gregory S ; GIERING, Michael J ; ERDINC, Ozgur</creatorcontrib><description>A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.</description><language>eng ; fre ; ger</language><subject>BLASTING ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; ENGINEERING ELEMENTS AND UNITS ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; GEARING ; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS ; HEATING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; LIGHTING ; LUBRICATING ; MEASURING ; MECHANICAL ENGINEERING ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; TESTING ; THERMAL INSULATION IN GENERAL ; WEAPONS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220928&amp;DB=EPODOC&amp;CC=EP&amp;NR=3312604B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220928&amp;DB=EPODOC&amp;CC=EP&amp;NR=3312604B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KHIBNIK, Alexander I</creatorcontrib><creatorcontrib>LIN, Yiquing</creatorcontrib><creatorcontrib>HAGEN, Gregory S</creatorcontrib><creatorcontrib>GIERING, Michael J</creatorcontrib><creatorcontrib>ERDINC, Ozgur</creatorcontrib><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><description>A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.</description><subject>BLASTING</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>ENGINEERING ELEMENTS AND UNITS</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>GEARING</subject><subject>GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS</subject><subject>HEATING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>LIGHTING</subject><subject>LUBRICATING</subject><subject>MEASURING</subject><subject>MECHANICAL ENGINEERING</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>TESTING</subject><subject>THERMAL INSULATION IN GENERAL</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDy9_RRcHF1CvIMVvD19_MM8Q_y9HNX0PB38dVUCPcM8VBwdHEMCPEMc1XwcXUM8gNK8jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY2NDIzMDEydDYyKUAAAMrCYX</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>KHIBNIK, Alexander I</creator><creator>LIN, Yiquing</creator><creator>HAGEN, Gregory S</creator><creator>GIERING, Michael J</creator><creator>ERDINC, Ozgur</creator><scope>EVB</scope></search><sort><creationdate>20220928</creationdate><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><author>KHIBNIK, Alexander I ; LIN, Yiquing ; HAGEN, Gregory S ; GIERING, Michael J ; ERDINC, Ozgur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3312604B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>BLASTING</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>ENGINEERING ELEMENTS AND UNITS</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>GEARING</topic><topic>GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS</topic><topic>HEATING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>LIGHTING</topic><topic>LUBRICATING</topic><topic>MEASURING</topic><topic>MECHANICAL ENGINEERING</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>TESTING</topic><topic>THERMAL INSULATION IN GENERAL</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>KHIBNIK, Alexander I</creatorcontrib><creatorcontrib>LIN, Yiquing</creatorcontrib><creatorcontrib>HAGEN, Gregory S</creatorcontrib><creatorcontrib>GIERING, Michael J</creatorcontrib><creatorcontrib>ERDINC, Ozgur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KHIBNIK, Alexander I</au><au>LIN, Yiquing</au><au>HAGEN, Gregory S</au><au>GIERING, Michael J</au><au>ERDINC, Ozgur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><date>2022-09-28</date><risdate>2022</risdate><abstract>A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3312604B1
source esp@cenet
subjects BLASTING
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
ENGINEERING ELEMENTS AND UNITS
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
GEARING
GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS
HEATING
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
LIGHTING
LUBRICATING
MEASURING
MECHANICAL ENGINEERING
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
TESTING
THERMAL INSULATION IN GENERAL
WEAPONS
title OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KHIBNIK,%20Alexander%20I&rft.date=2022-09-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3312604B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true