OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING
A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on de...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KHIBNIK, Alexander I LIN, Yiquing HAGEN, Gregory S GIERING, Michael J ERDINC, Ozgur |
description | A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3312604B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3312604B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3312604B13</originalsourceid><addsrcrecordid>eNrjZDDy9_RRcHF1CvIMVvD19_MM8Q_y9HNX0PB38dVUCPcM8VBwdHEMCPEMc1XwcXUM8gNK8jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY2NDIzMDEydDYyKUAAAMrCYX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><source>esp@cenet</source><creator>KHIBNIK, Alexander I ; LIN, Yiquing ; HAGEN, Gregory S ; GIERING, Michael J ; ERDINC, Ozgur</creator><creatorcontrib>KHIBNIK, Alexander I ; LIN, Yiquing ; HAGEN, Gregory S ; GIERING, Michael J ; ERDINC, Ozgur</creatorcontrib><description>A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.</description><language>eng ; fre ; ger</language><subject>BLASTING ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; ENGINEERING ELEMENTS AND UNITS ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; GEARING ; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS ; HEATING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; LIGHTING ; LUBRICATING ; MEASURING ; MECHANICAL ENGINEERING ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; TESTING ; THERMAL INSULATION IN GENERAL ; WEAPONS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220928&DB=EPODOC&CC=EP&NR=3312604B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220928&DB=EPODOC&CC=EP&NR=3312604B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KHIBNIK, Alexander I</creatorcontrib><creatorcontrib>LIN, Yiquing</creatorcontrib><creatorcontrib>HAGEN, Gregory S</creatorcontrib><creatorcontrib>GIERING, Michael J</creatorcontrib><creatorcontrib>ERDINC, Ozgur</creatorcontrib><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><description>A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.</description><subject>BLASTING</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>ENGINEERING ELEMENTS AND UNITS</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>GEARING</subject><subject>GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS</subject><subject>HEATING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>LIGHTING</subject><subject>LUBRICATING</subject><subject>MEASURING</subject><subject>MECHANICAL ENGINEERING</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>TESTING</subject><subject>THERMAL INSULATION IN GENERAL</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDy9_RRcHF1CvIMVvD19_MM8Q_y9HNX0PB38dVUCPcM8VBwdHEMCPEMc1XwcXUM8gNK8jCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY2NDIzMDEydDYyKUAAAMrCYX</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>KHIBNIK, Alexander I</creator><creator>LIN, Yiquing</creator><creator>HAGEN, Gregory S</creator><creator>GIERING, Michael J</creator><creator>ERDINC, Ozgur</creator><scope>EVB</scope></search><sort><creationdate>20220928</creationdate><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><author>KHIBNIK, Alexander I ; LIN, Yiquing ; HAGEN, Gregory S ; GIERING, Michael J ; ERDINC, Ozgur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3312604B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2022</creationdate><topic>BLASTING</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>ENGINEERING ELEMENTS AND UNITS</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>GEARING</topic><topic>GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS</topic><topic>HEATING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>LIGHTING</topic><topic>LUBRICATING</topic><topic>MEASURING</topic><topic>MECHANICAL ENGINEERING</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>TESTING</topic><topic>THERMAL INSULATION IN GENERAL</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>KHIBNIK, Alexander I</creatorcontrib><creatorcontrib>LIN, Yiquing</creatorcontrib><creatorcontrib>HAGEN, Gregory S</creatorcontrib><creatorcontrib>GIERING, Michael J</creatorcontrib><creatorcontrib>ERDINC, Ozgur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KHIBNIK, Alexander I</au><au>LIN, Yiquing</au><au>HAGEN, Gregory S</au><au>GIERING, Michael J</au><au>ERDINC, Ozgur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING</title><date>2022-09-28</date><risdate>2022</risdate><abstract>A method (700) for debris particle detection with adaptive learning includes: receiving (705) oil debris monitoring (ODM) sensor data from an oil debris monitor sensor and fleet data from a database; detecting (710) a feature in the ODM sensor data; generating an anomaly detection signal based on detecting (715) an anomaly by comparing the feature in the ODM sensor data to a limit defined by system information stored in the fleet data; selecting (720) a maintenance action request based on the anomaly detection signal; and adjusting one or more of the feature, the anomaly, the limit, and the maintenance action request by applying (725) an adaptive learning algorithm that uses the ODM sensor data, fleet data, and feedback from field maintenance of one or more engines that evolves over time.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3312604B1 |
source | esp@cenet |
subjects | BLASTING CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING ENGINEERING ELEMENTS AND UNITS FUNCTIONAL ELEMENTS OF SUCH SYSTEMS GEARING GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS HEATING INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES LIGHTING LUBRICATING MEASURING MECHANICAL ENGINEERING MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING TESTING THERMAL INSULATION IN GENERAL WEAPONS |
title | OIL DEBRIS MONITORING (ODM) WITH ADAPTIVE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KHIBNIK,%20Alexander%20I&rft.date=2022-09-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3312604B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |