FLOW CYTOMETRY DATA PROCESSING FOR ANTIMICROBIAL AGENT SENSIBILITY PREDICTION

A method for predicting the sensibility phenotype of a test microorganism to an antimicrobial agent amongst susceptible, intermediate and resistant phenotypes, comprising a learning stage and a prediction stage. The learning stage comprises selecting a wide set of different strains having different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RAMJEET, Mahendrasingh, MAHE, Pierre, CHAPEL, Margaux, KANEKO, Gael
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator RAMJEET, Mahendrasingh
MAHE, Pierre
CHAPEL, Margaux
KANEKO, Gael
description A method for predicting the sensibility phenotype of a test microorganism to an antimicrobial agent amongst susceptible, intermediate and resistant phenotypes, comprising a learning stage and a prediction stage. The learning stage comprises selecting a wide set of different strains having different known sensibility phenotypes determined according EUCAST or CLSI method, acquiring FCM (flow cytometry) distributions for each of said strain aliquoted in liquid samples with fluorescent markers and different concentrations of the antibiotic, and performing a learning machine computing on mono or multidimensional spaces involving feature vectors derived from the FCM acquisition to derive a prediction model of the sensibility phenotype to the antibiotic.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3266877B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3266877B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3266877B13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAuDqL-w_2AgxZa1yS91IMkV5KDkqkUiZNoof4_OvgBTm9528pbxyOYLOxRYoZOiYIhssGUKPRgOYIKQp5MZE3KgeoxCCQMiTQ5kvzt2JER4rCvNvf5sZbDz10FFsVcj2V5TWVd5lt5lveEQ31umkvb6lP9R_kAx3YuXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FLOW CYTOMETRY DATA PROCESSING FOR ANTIMICROBIAL AGENT SENSIBILITY PREDICTION</title><source>esp@cenet</source><creator>RAMJEET, Mahendrasingh ; MAHE, Pierre ; CHAPEL, Margaux ; KANEKO, Gael</creator><creatorcontrib>RAMJEET, Mahendrasingh ; MAHE, Pierre ; CHAPEL, Margaux ; KANEKO, Gael</creatorcontrib><description>A method for predicting the sensibility phenotype of a test microorganism to an antimicrobial agent amongst susceptible, intermediate and resistant phenotypes, comprising a learning stage and a prediction stage. The learning stage comprises selecting a wide set of different strains having different known sensibility phenotypes determined according EUCAST or CLSI method, acquiring FCM (flow cytometry) distributions for each of said strain aliquoted in liquid samples with fluorescent markers and different concentrations of the antibiotic, and performing a learning machine computing on mono or multidimensional spaces involving feature vectors derived from the FCM acquisition to derive a prediction model of the sensibility phenotype to the antibiotic.</description><language>eng ; fre ; ger</language><subject>BEER ; BIOCHEMISTRY ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; ENZYMOLOGY ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; VINEGAR ; WINE</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190227&amp;DB=EPODOC&amp;CC=EP&amp;NR=3266877B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190227&amp;DB=EPODOC&amp;CC=EP&amp;NR=3266877B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>RAMJEET, Mahendrasingh</creatorcontrib><creatorcontrib>MAHE, Pierre</creatorcontrib><creatorcontrib>CHAPEL, Margaux</creatorcontrib><creatorcontrib>KANEKO, Gael</creatorcontrib><title>FLOW CYTOMETRY DATA PROCESSING FOR ANTIMICROBIAL AGENT SENSIBILITY PREDICTION</title><description>A method for predicting the sensibility phenotype of a test microorganism to an antimicrobial agent amongst susceptible, intermediate and resistant phenotypes, comprising a learning stage and a prediction stage. The learning stage comprises selecting a wide set of different strains having different known sensibility phenotypes determined according EUCAST or CLSI method, acquiring FCM (flow cytometry) distributions for each of said strain aliquoted in liquid samples with fluorescent markers and different concentrations of the antibiotic, and performing a learning machine computing on mono or multidimensional spaces involving feature vectors derived from the FCM acquisition to derive a prediction model of the sensibility phenotype to the antibiotic.</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>ENZYMOLOGY</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAuDqL-w_2AgxZa1yS91IMkV5KDkqkUiZNoof4_OvgBTm9528pbxyOYLOxRYoZOiYIhssGUKPRgOYIKQp5MZE3KgeoxCCQMiTQ5kvzt2JER4rCvNvf5sZbDz10FFsVcj2V5TWVd5lt5lveEQ31umkvb6lP9R_kAx3YuXw</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>RAMJEET, Mahendrasingh</creator><creator>MAHE, Pierre</creator><creator>CHAPEL, Margaux</creator><creator>KANEKO, Gael</creator><scope>EVB</scope></search><sort><creationdate>20190227</creationdate><title>FLOW CYTOMETRY DATA PROCESSING FOR ANTIMICROBIAL AGENT SENSIBILITY PREDICTION</title><author>RAMJEET, Mahendrasingh ; MAHE, Pierre ; CHAPEL, Margaux ; KANEKO, Gael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3266877B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>ENZYMOLOGY</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>RAMJEET, Mahendrasingh</creatorcontrib><creatorcontrib>MAHE, Pierre</creatorcontrib><creatorcontrib>CHAPEL, Margaux</creatorcontrib><creatorcontrib>KANEKO, Gael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>RAMJEET, Mahendrasingh</au><au>MAHE, Pierre</au><au>CHAPEL, Margaux</au><au>KANEKO, Gael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FLOW CYTOMETRY DATA PROCESSING FOR ANTIMICROBIAL AGENT SENSIBILITY PREDICTION</title><date>2019-02-27</date><risdate>2019</risdate><abstract>A method for predicting the sensibility phenotype of a test microorganism to an antimicrobial agent amongst susceptible, intermediate and resistant phenotypes, comprising a learning stage and a prediction stage. The learning stage comprises selecting a wide set of different strains having different known sensibility phenotypes determined according EUCAST or CLSI method, acquiring FCM (flow cytometry) distributions for each of said strain aliquoted in liquid samples with fluorescent markers and different concentrations of the antibiotic, and performing a learning machine computing on mono or multidimensional spaces involving feature vectors derived from the FCM acquisition to derive a prediction model of the sensibility phenotype to the antibiotic.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3266877B1
source esp@cenet
subjects BEER
BIOCHEMISTRY
CHEMISTRY
COMPOSITIONS OR TEST PAPERS THEREFOR
CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES
ENZYMOLOGY
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS
METALLURGY
MICROBIOLOGY
MUTATION OR GENETIC ENGINEERING
PHYSICS
PROCESSES OF PREPARING SUCH COMPOSITIONS
SPIRITS
VINEGAR
WINE
title FLOW CYTOMETRY DATA PROCESSING FOR ANTIMICROBIAL AGENT SENSIBILITY PREDICTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=RAMJEET,%20Mahendrasingh&rft.date=2019-02-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3266877B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true