COMBINED ENERGY DISSIPATION APPARATUS AND METHOD

An apparatus and corresponding approaches for a combined energy dissipation include an energy dissipater forming a hollow chamber therein containing a partial pressure working fluid and a first adjustable thermal connector configured to be placed in an opening of the energy dissipater between an ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: LUECKENBACH, William Henry
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUECKENBACH, William Henry
description An apparatus and corresponding approaches for a combined energy dissipation include an energy dissipater forming a hollow chamber therein containing a partial pressure working fluid and a first adjustable thermal connector configured to be placed in an opening of the energy dissipater between an energy generating component to transfer energy there between. The first adjustable thermal connector includes a heat spreader at least partially disposed within the opening of the dissipater, an elastic member operably coupled to the energy dissipater, a flexible membrane coupled to the energy dissipater and the heat spreader, and a phase change material configured to at least partially fill an area defined by the opening, heat spreader, elastic member, and flexible membrane. Upon changing the phase change material to a first material phase, the elastic member applies a biasing force to the energy generating component to align the heat spreader with the energy generating component.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3227624A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3227624A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3227624A13</originalsourceid><addsrcrecordid>eNrjZDBw9vd18vRzdVFw9XMNco9UcPEMDvYMcAzx9PdTcAwIcAxyDAkNVnD0c1HwdQ3x8HfhYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGRkbmZkYmjobGRCgBAOjGJeo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COMBINED ENERGY DISSIPATION APPARATUS AND METHOD</title><source>esp@cenet</source><creator>LUECKENBACH, William Henry</creator><creatorcontrib>LUECKENBACH, William Henry</creatorcontrib><description>An apparatus and corresponding approaches for a combined energy dissipation include an energy dissipater forming a hollow chamber therein containing a partial pressure working fluid and a first adjustable thermal connector configured to be placed in an opening of the energy dissipater between an energy generating component to transfer energy there between. The first adjustable thermal connector includes a heat spreader at least partially disposed within the opening of the dissipater, an elastic member operably coupled to the energy dissipater, a flexible membrane coupled to the energy dissipater and the heat spreader, and a phase change material configured to at least partially fill an area defined by the opening, heat spreader, elastic member, and flexible membrane. Upon changing the phase change material to a first material phase, the elastic member applies a biasing force to the energy generating component to align the heat spreader with the energy generating component.</description><language>eng ; fre ; ger</language><subject>BLASTING ; HEAT EXCHANGE IN GENERAL ; HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION ; HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT ; HEATING ; LIGHTING ; MECHANICAL ENGINEERING ; WEAPONS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171011&amp;DB=EPODOC&amp;CC=EP&amp;NR=3227624A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171011&amp;DB=EPODOC&amp;CC=EP&amp;NR=3227624A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUECKENBACH, William Henry</creatorcontrib><title>COMBINED ENERGY DISSIPATION APPARATUS AND METHOD</title><description>An apparatus and corresponding approaches for a combined energy dissipation include an energy dissipater forming a hollow chamber therein containing a partial pressure working fluid and a first adjustable thermal connector configured to be placed in an opening of the energy dissipater between an energy generating component to transfer energy there between. The first adjustable thermal connector includes a heat spreader at least partially disposed within the opening of the dissipater, an elastic member operably coupled to the energy dissipater, a flexible membrane coupled to the energy dissipater and the heat spreader, and a phase change material configured to at least partially fill an area defined by the opening, heat spreader, elastic member, and flexible membrane. Upon changing the phase change material to a first material phase, the elastic member applies a biasing force to the energy generating component to align the heat spreader with the energy generating component.</description><subject>BLASTING</subject><subject>HEAT EXCHANGE IN GENERAL</subject><subject>HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION</subject><subject>HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBw9vd18vRzdVFw9XMNco9UcPEMDvYMcAzx9PdTcAwIcAxyDAkNVnD0c1HwdQ3x8HfhYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGRkbmZkYmjobGRCgBAOjGJeo</recordid><startdate>20171011</startdate><enddate>20171011</enddate><creator>LUECKENBACH, William Henry</creator><scope>EVB</scope></search><sort><creationdate>20171011</creationdate><title>COMBINED ENERGY DISSIPATION APPARATUS AND METHOD</title><author>LUECKENBACH, William Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3227624A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2017</creationdate><topic>BLASTING</topic><topic>HEAT EXCHANGE IN GENERAL</topic><topic>HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION</topic><topic>HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUECKENBACH, William Henry</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUECKENBACH, William Henry</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COMBINED ENERGY DISSIPATION APPARATUS AND METHOD</title><date>2017-10-11</date><risdate>2017</risdate><abstract>An apparatus and corresponding approaches for a combined energy dissipation include an energy dissipater forming a hollow chamber therein containing a partial pressure working fluid and a first adjustable thermal connector configured to be placed in an opening of the energy dissipater between an energy generating component to transfer energy there between. The first adjustable thermal connector includes a heat spreader at least partially disposed within the opening of the dissipater, an elastic member operably coupled to the energy dissipater, a flexible membrane coupled to the energy dissipater and the heat spreader, and a phase change material configured to at least partially fill an area defined by the opening, heat spreader, elastic member, and flexible membrane. Upon changing the phase change material to a first material phase, the elastic member applies a biasing force to the energy generating component to align the heat spreader with the energy generating component.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3227624A1
source esp@cenet
subjects BLASTING
HEAT EXCHANGE IN GENERAL
HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACTWITHOUT CHEMICAL INTERACTION
HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS,IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
HEATING
LIGHTING
MECHANICAL ENGINEERING
WEAPONS
title COMBINED ENERGY DISSIPATION APPARATUS AND METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUECKENBACH,%20William%20Henry&rft.date=2017-10-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3227624A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true