MEMORY LEAK ANALYSIS BY USAGE TRENDS CORRELATION

Tools and techniques assist developers with the detection of memory leaks by using correlation of data type memory usage trends. In particular, investigations of memory leaks can be prioritized without always resorting to the use of bulky and performance-degrading memory dumps, by using these tools...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ROSEN, Douglas Jay, FAN, Jing, CRAWFORD, Brian, VANN, Daniel, ABRAHAM, Arun Mathew
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ROSEN, Douglas Jay
FAN, Jing
CRAWFORD, Brian
VANN, Daniel
ABRAHAM, Arun Mathew
description Tools and techniques assist developers with the detection of memory leaks by using correlation of data type memory usage trends. In particular, investigations of memory leaks can be prioritized without always resorting to the use of bulky and performance-degrading memory dumps, by using these tools and techniques to identify leaky correlated data types. Data about a program's memory usage is processed to identify memory usage trends over time for respective data types, and the trends are searched for significant correlations. Correlated trends (and hence their corresponding data types) are grouped. Memory usage analysis information is displayed for grouped data types, such as the names of the most rapidly leaking data types, the names of correlated data types, leak rates, and leak amounts in terms of memory size and/or data object counts. Memory usage data may also be correlated with processing load requests to indicate which requests have associated memory leaks.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3191964B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3191964B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3191964B13</originalsourceid><addsrcrecordid>eNrjZDDwdfX1D4pU8HF19FZw9HP0iQz2DFZwilQIDXZ0d1UICXL1cwlWcPYPCnL1cQzx9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGhpaGlmYmTobGRCgBAOk6Jf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MEMORY LEAK ANALYSIS BY USAGE TRENDS CORRELATION</title><source>esp@cenet</source><creator>ROSEN, Douglas Jay ; FAN, Jing ; CRAWFORD, Brian ; VANN, Daniel ; ABRAHAM, Arun Mathew</creator><creatorcontrib>ROSEN, Douglas Jay ; FAN, Jing ; CRAWFORD, Brian ; VANN, Daniel ; ABRAHAM, Arun Mathew</creatorcontrib><description>Tools and techniques assist developers with the detection of memory leaks by using correlation of data type memory usage trends. In particular, investigations of memory leaks can be prioritized without always resorting to the use of bulky and performance-degrading memory dumps, by using these tools and techniques to identify leaky correlated data types. Data about a program's memory usage is processed to identify memory usage trends over time for respective data types, and the trends are searched for significant correlations. Correlated trends (and hence their corresponding data types) are grouped. Memory usage analysis information is displayed for grouped data types, such as the names of the most rapidly leaking data types, the names of correlated data types, leak rates, and leak amounts in terms of memory size and/or data object counts. Memory usage data may also be correlated with processing load requests to indicate which requests have associated memory leaks.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200219&amp;DB=EPODOC&amp;CC=EP&amp;NR=3191964B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200219&amp;DB=EPODOC&amp;CC=EP&amp;NR=3191964B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ROSEN, Douglas Jay</creatorcontrib><creatorcontrib>FAN, Jing</creatorcontrib><creatorcontrib>CRAWFORD, Brian</creatorcontrib><creatorcontrib>VANN, Daniel</creatorcontrib><creatorcontrib>ABRAHAM, Arun Mathew</creatorcontrib><title>MEMORY LEAK ANALYSIS BY USAGE TRENDS CORRELATION</title><description>Tools and techniques assist developers with the detection of memory leaks by using correlation of data type memory usage trends. In particular, investigations of memory leaks can be prioritized without always resorting to the use of bulky and performance-degrading memory dumps, by using these tools and techniques to identify leaky correlated data types. Data about a program's memory usage is processed to identify memory usage trends over time for respective data types, and the trends are searched for significant correlations. Correlated trends (and hence their corresponding data types) are grouped. Memory usage analysis information is displayed for grouped data types, such as the names of the most rapidly leaking data types, the names of correlated data types, leak rates, and leak amounts in terms of memory size and/or data object counts. Memory usage data may also be correlated with processing load requests to indicate which requests have associated memory leaks.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDwdfX1D4pU8HF19FZw9HP0iQz2DFZwilQIDXZ0d1UICXL1cwlWcPYPCnL1cQzx9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGhpaGlmYmTobGRCgBAOk6Jf8</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>ROSEN, Douglas Jay</creator><creator>FAN, Jing</creator><creator>CRAWFORD, Brian</creator><creator>VANN, Daniel</creator><creator>ABRAHAM, Arun Mathew</creator><scope>EVB</scope></search><sort><creationdate>20200219</creationdate><title>MEMORY LEAK ANALYSIS BY USAGE TRENDS CORRELATION</title><author>ROSEN, Douglas Jay ; FAN, Jing ; CRAWFORD, Brian ; VANN, Daniel ; ABRAHAM, Arun Mathew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3191964B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ROSEN, Douglas Jay</creatorcontrib><creatorcontrib>FAN, Jing</creatorcontrib><creatorcontrib>CRAWFORD, Brian</creatorcontrib><creatorcontrib>VANN, Daniel</creatorcontrib><creatorcontrib>ABRAHAM, Arun Mathew</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ROSEN, Douglas Jay</au><au>FAN, Jing</au><au>CRAWFORD, Brian</au><au>VANN, Daniel</au><au>ABRAHAM, Arun Mathew</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MEMORY LEAK ANALYSIS BY USAGE TRENDS CORRELATION</title><date>2020-02-19</date><risdate>2020</risdate><abstract>Tools and techniques assist developers with the detection of memory leaks by using correlation of data type memory usage trends. In particular, investigations of memory leaks can be prioritized without always resorting to the use of bulky and performance-degrading memory dumps, by using these tools and techniques to identify leaky correlated data types. Data about a program's memory usage is processed to identify memory usage trends over time for respective data types, and the trends are searched for significant correlations. Correlated trends (and hence their corresponding data types) are grouped. Memory usage analysis information is displayed for grouped data types, such as the names of the most rapidly leaking data types, the names of correlated data types, leak rates, and leak amounts in terms of memory size and/or data object counts. Memory usage data may also be correlated with processing load requests to indicate which requests have associated memory leaks.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3191964B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title MEMORY LEAK ANALYSIS BY USAGE TRENDS CORRELATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ROSEN,%20Douglas%20Jay&rft.date=2020-02-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3191964B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true