DATA FUSION ANALYSIS FOR MARITIME AUTOMATIC TARGET RECOGNITION

A system and method for performing Automatic Target Recognition by combining the outputs of several classifiers. In one embodiment, feature vectors are extracted from radar images and fed to three classifiers. The classifiers include a Gaussian mixture model neural network, a radial basis function n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: STEPHAN, Bryan D, SATHYENDRA, Harsha Modur
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator STEPHAN, Bryan D
SATHYENDRA, Harsha Modur
description A system and method for performing Automatic Target Recognition by combining the outputs of several classifiers. In one embodiment, feature vectors are extracted from radar images and fed to three classifiers. The classifiers include a Gaussian mixture model neural network, a radial basis function neural network, and a vector quantization classifier. The class designations generated by the classifiers are combined in a weighted voting system, i.e., the mode of the weighted classification decisions is selected as the overall class designation of the target. A confidence metric may be formed from the extent to which the class designations of the several classifiers are the same. This system is also designed to handle unknown target types and subsequent re-integration at a later time, effectively, artificially and automatically increasing the training database size.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3152707A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3152707A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3152707A13</originalsourceid><addsrcrecordid>eNrjZLBzcQxxVHALDfb091Nw9HP0iQz2DFZw8w9S8HUM8gzx9HVVcAwN8fd1DPF0VghxDHJ3DVEIcnX2d_cDSvr78TCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY0NTI3MDc0dDYyKUAAAVrSnf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA FUSION ANALYSIS FOR MARITIME AUTOMATIC TARGET RECOGNITION</title><source>esp@cenet</source><creator>STEPHAN, Bryan D ; SATHYENDRA, Harsha Modur</creator><creatorcontrib>STEPHAN, Bryan D ; SATHYENDRA, Harsha Modur</creatorcontrib><description>A system and method for performing Automatic Target Recognition by combining the outputs of several classifiers. In one embodiment, feature vectors are extracted from radar images and fed to three classifiers. The classifiers include a Gaussian mixture model neural network, a radial basis function neural network, and a vector quantization classifier. The class designations generated by the classifiers are combined in a weighted voting system, i.e., the mode of the weighted classification decisions is selected as the overall class designation of the target. A confidence metric may be formed from the extent to which the class designations of the several classifiers are the same. This system is also designed to handle unknown target types and subsequent re-integration at a later time, effectively, artificially and automatically increasing the training database size.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170412&amp;DB=EPODOC&amp;CC=EP&amp;NR=3152707A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170412&amp;DB=EPODOC&amp;CC=EP&amp;NR=3152707A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>STEPHAN, Bryan D</creatorcontrib><creatorcontrib>SATHYENDRA, Harsha Modur</creatorcontrib><title>DATA FUSION ANALYSIS FOR MARITIME AUTOMATIC TARGET RECOGNITION</title><description>A system and method for performing Automatic Target Recognition by combining the outputs of several classifiers. In one embodiment, feature vectors are extracted from radar images and fed to three classifiers. The classifiers include a Gaussian mixture model neural network, a radial basis function neural network, and a vector quantization classifier. The class designations generated by the classifiers are combined in a weighted voting system, i.e., the mode of the weighted classification decisions is selected as the overall class designation of the target. A confidence metric may be formed from the extent to which the class designations of the several classifiers are the same. This system is also designed to handle unknown target types and subsequent re-integration at a later time, effectively, artificially and automatically increasing the training database size.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzcQxxVHALDfb091Nw9HP0iQz2DFZw8w9S8HUM8gzx9HVVcAwN8fd1DPF0VghxDHJ3DVEIcnX2d_cDSvr78TCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY0NTI3MDc0dDYyKUAAAVrSnf</recordid><startdate>20170412</startdate><enddate>20170412</enddate><creator>STEPHAN, Bryan D</creator><creator>SATHYENDRA, Harsha Modur</creator><scope>EVB</scope></search><sort><creationdate>20170412</creationdate><title>DATA FUSION ANALYSIS FOR MARITIME AUTOMATIC TARGET RECOGNITION</title><author>STEPHAN, Bryan D ; SATHYENDRA, Harsha Modur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3152707A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>STEPHAN, Bryan D</creatorcontrib><creatorcontrib>SATHYENDRA, Harsha Modur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>STEPHAN, Bryan D</au><au>SATHYENDRA, Harsha Modur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA FUSION ANALYSIS FOR MARITIME AUTOMATIC TARGET RECOGNITION</title><date>2017-04-12</date><risdate>2017</risdate><abstract>A system and method for performing Automatic Target Recognition by combining the outputs of several classifiers. In one embodiment, feature vectors are extracted from radar images and fed to three classifiers. The classifiers include a Gaussian mixture model neural network, a radial basis function neural network, and a vector quantization classifier. The class designations generated by the classifiers are combined in a weighted voting system, i.e., the mode of the weighted classification decisions is selected as the overall class designation of the target. A confidence metric may be formed from the extent to which the class designations of the several classifiers are the same. This system is also designed to handle unknown target types and subsequent re-integration at a later time, effectively, artificially and automatically increasing the training database size.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3152707A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title DATA FUSION ANALYSIS FOR MARITIME AUTOMATIC TARGET RECOGNITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=STEPHAN,%20Bryan%20D&rft.date=2017-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3152707A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true