POSE AND SUB-POSE CLUSTERING-BASED IDENTIFICATION OF INDIVIDUALS
The subject matter discloses systems and methods for identification of individuals. The method includes obtaining static and dynamic feature vectors for skeleton data frames of each individual performing a step activity with an arbitrary pattern and in a random path; creating, for the each individua...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SINHA, Aniruddha CHAKRAVARTY, Kingshuk |
description | The subject matter discloses systems and methods for identification of individuals. The method includes obtaining static and dynamic feature vectors for skeleton data frames of each individual performing a step activity with an arbitrary pattern and in a random path; creating, for the each individual, a first predefined number of clusters of dynamic feature vectors for the frames; creating, for the each individual, a second predefined number of sub-clusters within the each of the clusters of the dynamic feature vectors for the frames associated with the each of the clusters; and determining, for the each individual, a gait-pose feature data set based on computation of a center of the dynamic feature vectors for the frames associated with the each of the sub-clusters, and a mean of the static feature vectors for the frames associated with the each of the clusters, for identifying the individuals. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3039600B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3039600B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3039600B13</originalsourceid><addsrcrecordid>eNrjZHAI8A92VXD0c1EIDnXSBXOcfUKDQ1yDPP3cdZ0cg11dFDxdXP1CPN08nR1DPP39FPzdFDz9XDzDPF1CHX2CeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnJqXmpJvGuAsYGxpZmBgZOhMRFKAFU7Kjo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>POSE AND SUB-POSE CLUSTERING-BASED IDENTIFICATION OF INDIVIDUALS</title><source>esp@cenet</source><creator>SINHA, Aniruddha ; CHAKRAVARTY, Kingshuk</creator><creatorcontrib>SINHA, Aniruddha ; CHAKRAVARTY, Kingshuk</creatorcontrib><description>The subject matter discloses systems and methods for identification of individuals. The method includes obtaining static and dynamic feature vectors for skeleton data frames of each individual performing a step activity with an arbitrary pattern and in a random path; creating, for the each individual, a first predefined number of clusters of dynamic feature vectors for the frames; creating, for the each individual, a second predefined number of sub-clusters within the each of the clusters of the dynamic feature vectors for the frames associated with the each of the clusters; and determining, for the each individual, a gait-pose feature data set based on computation of a center of the dynamic feature vectors for the frames associated with the each of the sub-clusters, and a mean of the static feature vectors for the frames associated with the each of the clusters, for identifying the individuals.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190206&DB=EPODOC&CC=EP&NR=3039600B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190206&DB=EPODOC&CC=EP&NR=3039600B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SINHA, Aniruddha</creatorcontrib><creatorcontrib>CHAKRAVARTY, Kingshuk</creatorcontrib><title>POSE AND SUB-POSE CLUSTERING-BASED IDENTIFICATION OF INDIVIDUALS</title><description>The subject matter discloses systems and methods for identification of individuals. The method includes obtaining static and dynamic feature vectors for skeleton data frames of each individual performing a step activity with an arbitrary pattern and in a random path; creating, for the each individual, a first predefined number of clusters of dynamic feature vectors for the frames; creating, for the each individual, a second predefined number of sub-clusters within the each of the clusters of the dynamic feature vectors for the frames associated with the each of the clusters; and determining, for the each individual, a gait-pose feature data set based on computation of a center of the dynamic feature vectors for the frames associated with the each of the sub-clusters, and a mean of the static feature vectors for the frames associated with the each of the clusters, for identifying the individuals.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAI8A92VXD0c1EIDnXSBXOcfUKDQ1yDPP3cdZ0cg11dFDxdXP1CPN08nR1DPP39FPzdFDz9XDzDPF1CHX2CeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnJqXmpJvGuAsYGxpZmBgZOhMRFKAFU7Kjo</recordid><startdate>20190206</startdate><enddate>20190206</enddate><creator>SINHA, Aniruddha</creator><creator>CHAKRAVARTY, Kingshuk</creator><scope>EVB</scope></search><sort><creationdate>20190206</creationdate><title>POSE AND SUB-POSE CLUSTERING-BASED IDENTIFICATION OF INDIVIDUALS</title><author>SINHA, Aniruddha ; CHAKRAVARTY, Kingshuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3039600B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SINHA, Aniruddha</creatorcontrib><creatorcontrib>CHAKRAVARTY, Kingshuk</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SINHA, Aniruddha</au><au>CHAKRAVARTY, Kingshuk</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>POSE AND SUB-POSE CLUSTERING-BASED IDENTIFICATION OF INDIVIDUALS</title><date>2019-02-06</date><risdate>2019</risdate><abstract>The subject matter discloses systems and methods for identification of individuals. The method includes obtaining static and dynamic feature vectors for skeleton data frames of each individual performing a step activity with an arbitrary pattern and in a random path; creating, for the each individual, a first predefined number of clusters of dynamic feature vectors for the frames; creating, for the each individual, a second predefined number of sub-clusters within the each of the clusters of the dynamic feature vectors for the frames associated with the each of the clusters; and determining, for the each individual, a gait-pose feature data set based on computation of a center of the dynamic feature vectors for the frames associated with the each of the sub-clusters, and a mean of the static feature vectors for the frames associated with the each of the clusters, for identifying the individuals.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3039600B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | POSE AND SUB-POSE CLUSTERING-BASED IDENTIFICATION OF INDIVIDUALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SINHA,%20Aniruddha&rft.date=2019-02-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3039600B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |