RETENTION RISK DETERMINER
A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of ti...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FAN, JAMES AJAO, ADEYEMI NAMJOSHI, PARAG AVINASH GIVERTS, VLADIMIR BECK, DANIEL WALTER SABAH, MOHAMMAD THAM, KEVIN MUN JOUN |
description | A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3038025A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3038025A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3038025A13</originalsourceid><addsrcrecordid>eNrjZJAMcg1x9Qvx9PdTCPIM9lZwAXKDfD39XIN4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxgbGFgZGpo6ExEUoA5W4fsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RETENTION RISK DETERMINER</title><source>esp@cenet</source><creator>FAN, JAMES ; AJAO, ADEYEMI ; NAMJOSHI, PARAG AVINASH ; GIVERTS, VLADIMIR ; BECK, DANIEL WALTER ; SABAH, MOHAMMAD ; THAM, KEVIN MUN JOUN</creator><creatorcontrib>FAN, JAMES ; AJAO, ADEYEMI ; NAMJOSHI, PARAG AVINASH ; GIVERTS, VLADIMIR ; BECK, DANIEL WALTER ; SABAH, MOHAMMAD ; THAM, KEVIN MUN JOUN</creatorcontrib><description>A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160629&DB=EPODOC&CC=EP&NR=3038025A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160629&DB=EPODOC&CC=EP&NR=3038025A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN, JAMES</creatorcontrib><creatorcontrib>AJAO, ADEYEMI</creatorcontrib><creatorcontrib>NAMJOSHI, PARAG AVINASH</creatorcontrib><creatorcontrib>GIVERTS, VLADIMIR</creatorcontrib><creatorcontrib>BECK, DANIEL WALTER</creatorcontrib><creatorcontrib>SABAH, MOHAMMAD</creatorcontrib><creatorcontrib>THAM, KEVIN MUN JOUN</creatorcontrib><title>RETENTION RISK DETERMINER</title><description>A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJAMcg1x9Qvx9PdTCPIM9lZwAXKDfD39XIN4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxgbGFgZGpo6ExEUoA5W4fsg</recordid><startdate>20160629</startdate><enddate>20160629</enddate><creator>FAN, JAMES</creator><creator>AJAO, ADEYEMI</creator><creator>NAMJOSHI, PARAG AVINASH</creator><creator>GIVERTS, VLADIMIR</creator><creator>BECK, DANIEL WALTER</creator><creator>SABAH, MOHAMMAD</creator><creator>THAM, KEVIN MUN JOUN</creator><scope>EVB</scope></search><sort><creationdate>20160629</creationdate><title>RETENTION RISK DETERMINER</title><author>FAN, JAMES ; AJAO, ADEYEMI ; NAMJOSHI, PARAG AVINASH ; GIVERTS, VLADIMIR ; BECK, DANIEL WALTER ; SABAH, MOHAMMAD ; THAM, KEVIN MUN JOUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3038025A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN, JAMES</creatorcontrib><creatorcontrib>AJAO, ADEYEMI</creatorcontrib><creatorcontrib>NAMJOSHI, PARAG AVINASH</creatorcontrib><creatorcontrib>GIVERTS, VLADIMIR</creatorcontrib><creatorcontrib>BECK, DANIEL WALTER</creatorcontrib><creatorcontrib>SABAH, MOHAMMAD</creatorcontrib><creatorcontrib>THAM, KEVIN MUN JOUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN, JAMES</au><au>AJAO, ADEYEMI</au><au>NAMJOSHI, PARAG AVINASH</au><au>GIVERTS, VLADIMIR</au><au>BECK, DANIEL WALTER</au><au>SABAH, MOHAMMAD</au><au>THAM, KEVIN MUN JOUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RETENTION RISK DETERMINER</title><date>2016-06-29</date><risdate>2016</risdate><abstract>A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP3038025A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | RETENTION RISK DETERMINER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN,%20JAMES&rft.date=2016-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3038025A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |