RETENTION RISK DETERMINER

A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FAN, JAMES, AJAO, ADEYEMI, NAMJOSHI, PARAG AVINASH, GIVERTS, VLADIMIR, BECK, DANIEL WALTER, SABAH, MOHAMMAD, THAM, KEVIN MUN JOUN
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FAN, JAMES
AJAO, ADEYEMI
NAMJOSHI, PARAG AVINASH
GIVERTS, VLADIMIR
BECK, DANIEL WALTER
SABAH, MOHAMMAD
THAM, KEVIN MUN JOUN
description A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3038025A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3038025A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3038025A13</originalsourceid><addsrcrecordid>eNrjZJAMcg1x9Qvx9PdTCPIM9lZwAXKDfD39XIN4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxgbGFgZGpo6ExEUoA5W4fsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RETENTION RISK DETERMINER</title><source>esp@cenet</source><creator>FAN, JAMES ; AJAO, ADEYEMI ; NAMJOSHI, PARAG AVINASH ; GIVERTS, VLADIMIR ; BECK, DANIEL WALTER ; SABAH, MOHAMMAD ; THAM, KEVIN MUN JOUN</creator><creatorcontrib>FAN, JAMES ; AJAO, ADEYEMI ; NAMJOSHI, PARAG AVINASH ; GIVERTS, VLADIMIR ; BECK, DANIEL WALTER ; SABAH, MOHAMMAD ; THAM, KEVIN MUN JOUN</creatorcontrib><description>A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160629&amp;DB=EPODOC&amp;CC=EP&amp;NR=3038025A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160629&amp;DB=EPODOC&amp;CC=EP&amp;NR=3038025A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN, JAMES</creatorcontrib><creatorcontrib>AJAO, ADEYEMI</creatorcontrib><creatorcontrib>NAMJOSHI, PARAG AVINASH</creatorcontrib><creatorcontrib>GIVERTS, VLADIMIR</creatorcontrib><creatorcontrib>BECK, DANIEL WALTER</creatorcontrib><creatorcontrib>SABAH, MOHAMMAD</creatorcontrib><creatorcontrib>THAM, KEVIN MUN JOUN</creatorcontrib><title>RETENTION RISK DETERMINER</title><description>A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJAMcg1x9Qvx9PdTCPIM9lZwAXKDfD39XIN4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CxgbGFgZGpo6ExEUoA5W4fsg</recordid><startdate>20160629</startdate><enddate>20160629</enddate><creator>FAN, JAMES</creator><creator>AJAO, ADEYEMI</creator><creator>NAMJOSHI, PARAG AVINASH</creator><creator>GIVERTS, VLADIMIR</creator><creator>BECK, DANIEL WALTER</creator><creator>SABAH, MOHAMMAD</creator><creator>THAM, KEVIN MUN JOUN</creator><scope>EVB</scope></search><sort><creationdate>20160629</creationdate><title>RETENTION RISK DETERMINER</title><author>FAN, JAMES ; AJAO, ADEYEMI ; NAMJOSHI, PARAG AVINASH ; GIVERTS, VLADIMIR ; BECK, DANIEL WALTER ; SABAH, MOHAMMAD ; THAM, KEVIN MUN JOUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3038025A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN, JAMES</creatorcontrib><creatorcontrib>AJAO, ADEYEMI</creatorcontrib><creatorcontrib>NAMJOSHI, PARAG AVINASH</creatorcontrib><creatorcontrib>GIVERTS, VLADIMIR</creatorcontrib><creatorcontrib>BECK, DANIEL WALTER</creatorcontrib><creatorcontrib>SABAH, MOHAMMAD</creatorcontrib><creatorcontrib>THAM, KEVIN MUN JOUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN, JAMES</au><au>AJAO, ADEYEMI</au><au>NAMJOSHI, PARAG AVINASH</au><au>GIVERTS, VLADIMIR</au><au>BECK, DANIEL WALTER</au><au>SABAH, MOHAMMAD</au><au>THAM, KEVIN MUN JOUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RETENTION RISK DETERMINER</title><date>2016-06-29</date><risdate>2016</risdate><abstract>A system for determining retention risk comprises a grouper, a filter, a normalizer, a feature vector extractor, a model builder, and a predictor. The grouper is for determining a set of time series of transactions where each is associated with one employee. The filter is for filtering the set of time series of transactions based on an employee transition characteristic to determine a subset of time series. The normalizer is for determining a model set of time series by normalizing the subset of time series. The feature vector extractor is for determining a set of feature vectors determined from a time series of the model set of time series. The model builder is for determining one or more models based at least in part on the set of feature vectors. The predictor is for predicting retention risk for a given employee using the one or more models.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3038025A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title RETENTION RISK DETERMINER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN,%20JAMES&rft.date=2016-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3038025A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true