Method and an apparatus for generating an Approximate Nearest Neighbor Field (ANNF) for images and video sequences
An algorithm for performing super-resolution splits an input image or video into patches and relies on image self-similarity, wherein similar patches are searched in different downscaled versions of an image, using Approximate Nearest-Neighbor Fields (ANNF). The goal of ANNF is to locate with a mini...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SALVADOR MARCOS, JORDI BAGCILAR, MELIKE KOCHALE, AXEL |
description | An algorithm for performing super-resolution splits an input image or video into patches and relies on image self-similarity, wherein similar patches are searched in different downscaled versions of an image, using Approximate Nearest-Neighbor Fields (ANNF). The goal of ANNF is to locate with a minimal number of search iterations for each patch of a source image the k most similar patches in a downscaled version of the source image or video. A method for generating an ANNF for images of an input video (15) comprises generating (20) a plurality of downscaled versions of the images of the input video at different scales, generating (30) an Inverse ANNF (IANNF) for the input video by finding for each patch of the downscaled images similar patches in the input video, generating (40) an ANNF for the input video by reversing the IANNF, and filling gaps in the ANNF by random search. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP2924648A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP2924648A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP2924648A13</originalsourceid><addsrcrecordid>eNqNjbEOgjAQhlkcjPoON-rgIBKjY2MgLhIHd3LCT2mCbW2L8fEtxAdwuHy5_N_dP0_cFaEzDbEeh9hadhwGT61xJKERN6XlmAlrnfmoJwdQCXbwIVLJ7hHVQqFvaC3KsthMt9GT8NPft2pgyOM1QNfwy2TWcu-x-nGRUJHfz5ctrKngLdexNlT5LT2l2SE7it3-D-ULlJhCKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and an apparatus for generating an Approximate Nearest Neighbor Field (ANNF) for images and video sequences</title><source>esp@cenet</source><creator>SALVADOR MARCOS, JORDI ; BAGCILAR, MELIKE ; KOCHALE, AXEL</creator><creatorcontrib>SALVADOR MARCOS, JORDI ; BAGCILAR, MELIKE ; KOCHALE, AXEL</creatorcontrib><description>An algorithm for performing super-resolution splits an input image or video into patches and relies on image self-similarity, wherein similar patches are searched in different downscaled versions of an image, using Approximate Nearest-Neighbor Fields (ANNF). The goal of ANNF is to locate with a minimal number of search iterations for each patch of a source image the k most similar patches in a downscaled version of the source image or video. A method for generating an ANNF for images of an input video (15) comprises generating (20) a plurality of downscaled versions of the images of the input video at different scales, generating (30) an Inverse ANNF (IANNF) for the input video by finding for each patch of the downscaled images similar patches in the input video, generating (40) an ANNF for the input video by reversing the IANNF, and filling gaps in the ANNF by random search.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150930&DB=EPODOC&CC=EP&NR=2924648A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150930&DB=EPODOC&CC=EP&NR=2924648A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SALVADOR MARCOS, JORDI</creatorcontrib><creatorcontrib>BAGCILAR, MELIKE</creatorcontrib><creatorcontrib>KOCHALE, AXEL</creatorcontrib><title>Method and an apparatus for generating an Approximate Nearest Neighbor Field (ANNF) for images and video sequences</title><description>An algorithm for performing super-resolution splits an input image or video into patches and relies on image self-similarity, wherein similar patches are searched in different downscaled versions of an image, using Approximate Nearest-Neighbor Fields (ANNF). The goal of ANNF is to locate with a minimal number of search iterations for each patch of a source image the k most similar patches in a downscaled version of the source image or video. A method for generating an ANNF for images of an input video (15) comprises generating (20) a plurality of downscaled versions of the images of the input video at different scales, generating (30) an Inverse ANNF (IANNF) for the input video by finding for each patch of the downscaled images similar patches in the input video, generating (40) an ANNF for the input video by reversing the IANNF, and filling gaps in the ANNF by random search.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEOgjAQhlkcjPoON-rgIBKjY2MgLhIHd3LCT2mCbW2L8fEtxAdwuHy5_N_dP0_cFaEzDbEeh9hadhwGT61xJKERN6XlmAlrnfmoJwdQCXbwIVLJ7hHVQqFvaC3KsthMt9GT8NPft2pgyOM1QNfwy2TWcu-x-nGRUJHfz5ctrKngLdexNlT5LT2l2SE7it3-D-ULlJhCKg</recordid><startdate>20150930</startdate><enddate>20150930</enddate><creator>SALVADOR MARCOS, JORDI</creator><creator>BAGCILAR, MELIKE</creator><creator>KOCHALE, AXEL</creator><scope>EVB</scope></search><sort><creationdate>20150930</creationdate><title>Method and an apparatus for generating an Approximate Nearest Neighbor Field (ANNF) for images and video sequences</title><author>SALVADOR MARCOS, JORDI ; BAGCILAR, MELIKE ; KOCHALE, AXEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP2924648A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SALVADOR MARCOS, JORDI</creatorcontrib><creatorcontrib>BAGCILAR, MELIKE</creatorcontrib><creatorcontrib>KOCHALE, AXEL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SALVADOR MARCOS, JORDI</au><au>BAGCILAR, MELIKE</au><au>KOCHALE, AXEL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and an apparatus for generating an Approximate Nearest Neighbor Field (ANNF) for images and video sequences</title><date>2015-09-30</date><risdate>2015</risdate><abstract>An algorithm for performing super-resolution splits an input image or video into patches and relies on image self-similarity, wherein similar patches are searched in different downscaled versions of an image, using Approximate Nearest-Neighbor Fields (ANNF). The goal of ANNF is to locate with a minimal number of search iterations for each patch of a source image the k most similar patches in a downscaled version of the source image or video. A method for generating an ANNF for images of an input video (15) comprises generating (20) a plurality of downscaled versions of the images of the input video at different scales, generating (30) an Inverse ANNF (IANNF) for the input video by finding for each patch of the downscaled images similar patches in the input video, generating (40) an ANNF for the input video by reversing the IANNF, and filling gaps in the ANNF by random search.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP2924648A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Method and an apparatus for generating an Approximate Nearest Neighbor Field (ANNF) for images and video sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SALVADOR%20MARCOS,%20JORDI&rft.date=2015-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP2924648A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |