COLLABORATIVE FILTERING SYSTEM AND COLLABORATIVE FILTERING METHOD

When there are no evaluation values from a user who has evaluated broth contents X and Z, an indirect similarity calculation unit 32 of an arithmetic processing unit 30 of an information processing center 10a indirectly calculates the similarity between the contents X and Z using evaluation values o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: IHARA NAOKI, KIMURA YUKI, YOKOYAMA YOSHINORI, YOSHIZU SAYAKA
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator IHARA NAOKI
KIMURA YUKI
YOKOYAMA YOSHINORI
YOSHIZU SAYAKA
description When there are no evaluation values from a user who has evaluated broth contents X and Z, an indirect similarity calculation unit 32 of an arithmetic processing unit 30 of an information processing center 10a indirectly calculates the similarity between the contents X and Z using evaluation values of a content Y whose evaluation value is present from a user who has evaluated both the contents X and Y and whose evaluation value is present from a user who has evaluated both the contents Y and Z. A predicted evaluation value calculation unit 33 calculates a predicted evaluation value from a user who has not evaluated either of the contents X and Z using the similarity between the contents X and Z calculated by the indirect similarity calculation unit 32 and the evaluation values of the contents X and Z. Thus, it is possible to calculate the predicted evaluation values of the contents X and Z which are not directly calculable. Therefore, it becomes possible to further expand the range of contents whose evaluation values are predictable through collaborative filtering.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP2515244A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP2515244A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP2515244A43</originalsourceid><addsrcrecordid>eNrjZHB09vfxcXTyD3IM8QxzVXDz9AlxDfL0c1cIjgwOcfVVcPRzUcClxNc1xMPfhYeBNS0xpziVF0pzMyi4uYY4e-imFuTHpxYXJCan5qWWxLsGGJkamhqZmDiaGBOhBACpYSrT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COLLABORATIVE FILTERING SYSTEM AND COLLABORATIVE FILTERING METHOD</title><source>esp@cenet</source><creator>IHARA NAOKI ; KIMURA YUKI ; YOKOYAMA YOSHINORI ; YOSHIZU SAYAKA</creator><creatorcontrib>IHARA NAOKI ; KIMURA YUKI ; YOKOYAMA YOSHINORI ; YOSHIZU SAYAKA</creatorcontrib><description>When there are no evaluation values from a user who has evaluated broth contents X and Z, an indirect similarity calculation unit 32 of an arithmetic processing unit 30 of an information processing center 10a indirectly calculates the similarity between the contents X and Z using evaluation values of a content Y whose evaluation value is present from a user who has evaluated both the contents X and Y and whose evaluation value is present from a user who has evaluated both the contents Y and Z. A predicted evaluation value calculation unit 33 calculates a predicted evaluation value from a user who has not evaluated either of the contents X and Z using the similarity between the contents X and Z calculated by the indirect similarity calculation unit 32 and the evaluation values of the contents X and Z. Thus, it is possible to calculate the predicted evaluation values of the contents X and Z which are not directly calculable. Therefore, it becomes possible to further expand the range of contents whose evaluation values are predictable through collaborative filtering.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150617&amp;DB=EPODOC&amp;CC=EP&amp;NR=2515244A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150617&amp;DB=EPODOC&amp;CC=EP&amp;NR=2515244A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>IHARA NAOKI</creatorcontrib><creatorcontrib>KIMURA YUKI</creatorcontrib><creatorcontrib>YOKOYAMA YOSHINORI</creatorcontrib><creatorcontrib>YOSHIZU SAYAKA</creatorcontrib><title>COLLABORATIVE FILTERING SYSTEM AND COLLABORATIVE FILTERING METHOD</title><description>When there are no evaluation values from a user who has evaluated broth contents X and Z, an indirect similarity calculation unit 32 of an arithmetic processing unit 30 of an information processing center 10a indirectly calculates the similarity between the contents X and Z using evaluation values of a content Y whose evaluation value is present from a user who has evaluated both the contents X and Y and whose evaluation value is present from a user who has evaluated both the contents Y and Z. A predicted evaluation value calculation unit 33 calculates a predicted evaluation value from a user who has not evaluated either of the contents X and Z using the similarity between the contents X and Z calculated by the indirect similarity calculation unit 32 and the evaluation values of the contents X and Z. Thus, it is possible to calculate the predicted evaluation values of the contents X and Z which are not directly calculable. Therefore, it becomes possible to further expand the range of contents whose evaluation values are predictable through collaborative filtering.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB09vfxcXTyD3IM8QxzVXDz9AlxDfL0c1cIjgwOcfVVcPRzUcClxNc1xMPfhYeBNS0xpziVF0pzMyi4uYY4e-imFuTHpxYXJCan5qWWxLsGGJkamhqZmDiaGBOhBACpYSrT</recordid><startdate>20150617</startdate><enddate>20150617</enddate><creator>IHARA NAOKI</creator><creator>KIMURA YUKI</creator><creator>YOKOYAMA YOSHINORI</creator><creator>YOSHIZU SAYAKA</creator><scope>EVB</scope></search><sort><creationdate>20150617</creationdate><title>COLLABORATIVE FILTERING SYSTEM AND COLLABORATIVE FILTERING METHOD</title><author>IHARA NAOKI ; KIMURA YUKI ; YOKOYAMA YOSHINORI ; YOSHIZU SAYAKA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP2515244A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>IHARA NAOKI</creatorcontrib><creatorcontrib>KIMURA YUKI</creatorcontrib><creatorcontrib>YOKOYAMA YOSHINORI</creatorcontrib><creatorcontrib>YOSHIZU SAYAKA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>IHARA NAOKI</au><au>KIMURA YUKI</au><au>YOKOYAMA YOSHINORI</au><au>YOSHIZU SAYAKA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COLLABORATIVE FILTERING SYSTEM AND COLLABORATIVE FILTERING METHOD</title><date>2015-06-17</date><risdate>2015</risdate><abstract>When there are no evaluation values from a user who has evaluated broth contents X and Z, an indirect similarity calculation unit 32 of an arithmetic processing unit 30 of an information processing center 10a indirectly calculates the similarity between the contents X and Z using evaluation values of a content Y whose evaluation value is present from a user who has evaluated both the contents X and Y and whose evaluation value is present from a user who has evaluated both the contents Y and Z. A predicted evaluation value calculation unit 33 calculates a predicted evaluation value from a user who has not evaluated either of the contents X and Z using the similarity between the contents X and Z calculated by the indirect similarity calculation unit 32 and the evaluation values of the contents X and Z. Thus, it is possible to calculate the predicted evaluation values of the contents X and Z which are not directly calculable. Therefore, it becomes possible to further expand the range of contents whose evaluation values are predictable through collaborative filtering.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP2515244A4
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title COLLABORATIVE FILTERING SYSTEM AND COLLABORATIVE FILTERING METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=IHARA%20NAOKI&rft.date=2015-06-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP2515244A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true