Method of making a composite ceramic material based on silicon nitride and beta-eucryptite
The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a firs...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEVALIER, JEROME VITUPIER, YANN REVERON, HELEN FANTOZZI, GILBERT PELLETANT, AURELIEN BLANCHARD, LAURENT |
description | The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The lithium aluminosilicate composition is represented as (Li 2O) x(Al 2O 3) y(SiO 2) z, where entire molar fractions (x, y, z) is different from (1, 1, 2). The first heat treatment is carried out at a first temperature greater than melting temperature of beta -eucryptite under the operating conditions. The second heat treatment is carried out by maintaining the ceramic composite and beta -eucryptite at a temperature of 500-800[deg] C, and comprises performing nucleation at a specified temperature and growth at a temperature greater than the nucleation temperature. The silicon nitride powder is washed to remove the silica polluting the powder before mixing it with the lithium aluminosilicate. The first lithium aluminosilicate powder is fabricated by producing a mixture of lithium carbonate, alumina and silica powder, and calcining a powder obtained from the mixture to obtain the first lithium aluminosilicate. The calcination step comprises raising the temperature to reach a maximum and then decreasing the temperature. The crystals of silicon nitride powder are nanometric or micrometric, and the crystals of the first lithium aluminosilicate powder are nanometric or micrometric.
Procédé de fabrication d'un composite céramique fritté à base de nitrure de silicium et de ²-eucryptite |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP2383243A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP2383243A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP2383243A23</originalsourceid><addsrcrecordid>eNqNizEOwjAQBNNQIOAP94E0MQUtQkE0SBRUNNHF3sApjm3ZR8HvccEDqKaYmXXzuEJf0VGcaOFZwpOYbFxSLKIgi8yL2KoUWdjTyAU1DlTEi60MolkciIOjEcot3jZ_ktZ726wm9gW7HzcNnfv76dIixQElsUWADv2tMwfT7c2xM38kX4E4Omc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method of making a composite ceramic material based on silicon nitride and beta-eucryptite</title><source>esp@cenet</source><creator>CHEVALIER, JEROME ; VITUPIER, YANN ; REVERON, HELEN ; FANTOZZI, GILBERT ; PELLETANT, AURELIEN ; BLANCHARD, LAURENT</creator><creatorcontrib>CHEVALIER, JEROME ; VITUPIER, YANN ; REVERON, HELEN ; FANTOZZI, GILBERT ; PELLETANT, AURELIEN ; BLANCHARD, LAURENT</creatorcontrib><description>The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The lithium aluminosilicate composition is represented as (Li 2O) x(Al 2O 3) y(SiO 2) z, where entire molar fractions (x, y, z) is different from (1, 1, 2). The first heat treatment is carried out at a first temperature greater than melting temperature of beta -eucryptite under the operating conditions. The second heat treatment is carried out by maintaining the ceramic composite and beta -eucryptite at a temperature of 500-800[deg] C, and comprises performing nucleation at a specified temperature and growth at a temperature greater than the nucleation temperature. The silicon nitride powder is washed to remove the silica polluting the powder before mixing it with the lithium aluminosilicate. The first lithium aluminosilicate powder is fabricated by producing a mixture of lithium carbonate, alumina and silica powder, and calcining a powder obtained from the mixture to obtain the first lithium aluminosilicate. The calcination step comprises raising the temperature to reach a maximum and then decreasing the temperature. The crystals of silicon nitride powder are nanometric or micrometric, and the crystals of the first lithium aluminosilicate powder are nanometric or micrometric.
Procédé de fabrication d'un composite céramique fritté à base de nitrure de silicium et de ²-eucryptite comprenant une étape de réalisation d'un premier mélange (101) d'une poudre de nitrure de silicium sous forme cristalline et d'une poudre d'un premier aluminosilicate de lithium sous forme cristalline dont la composition est la suivante (Li2O) x (Al2O3) y (SiO2) z , la composition d'aluminosilicate de lithium étant telle que l'ensemble des fractions molaires (x, y, z) est différent de l'ensemble (1, 1, 2).</description><language>eng ; fre ; ger</language><subject>ARTIFICIAL STONE ; CEMENTS ; CERAMICS ; CHEMISTRY ; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS ; CONCRETE ; LIME, MAGNESIA ; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES ; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES ; METALLURGY ; NANOTECHNOLOGY ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PERFORMING OPERATIONS ; PHYSICS ; REFRACTORIES ; SLAG ; SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES ; TRANSPORTING ; TREATMENT OF NATURAL STONE</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111102&DB=EPODOC&CC=EP&NR=2383243A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20111102&DB=EPODOC&CC=EP&NR=2383243A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEVALIER, JEROME</creatorcontrib><creatorcontrib>VITUPIER, YANN</creatorcontrib><creatorcontrib>REVERON, HELEN</creatorcontrib><creatorcontrib>FANTOZZI, GILBERT</creatorcontrib><creatorcontrib>PELLETANT, AURELIEN</creatorcontrib><creatorcontrib>BLANCHARD, LAURENT</creatorcontrib><title>Method of making a composite ceramic material based on silicon nitride and beta-eucryptite</title><description>The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The lithium aluminosilicate composition is represented as (Li 2O) x(Al 2O 3) y(SiO 2) z, where entire molar fractions (x, y, z) is different from (1, 1, 2). The first heat treatment is carried out at a first temperature greater than melting temperature of beta -eucryptite under the operating conditions. The second heat treatment is carried out by maintaining the ceramic composite and beta -eucryptite at a temperature of 500-800[deg] C, and comprises performing nucleation at a specified temperature and growth at a temperature greater than the nucleation temperature. The silicon nitride powder is washed to remove the silica polluting the powder before mixing it with the lithium aluminosilicate. The first lithium aluminosilicate powder is fabricated by producing a mixture of lithium carbonate, alumina and silica powder, and calcining a powder obtained from the mixture to obtain the first lithium aluminosilicate. The calcination step comprises raising the temperature to reach a maximum and then decreasing the temperature. The crystals of silicon nitride powder are nanometric or micrometric, and the crystals of the first lithium aluminosilicate powder are nanometric or micrometric.
Procédé de fabrication d'un composite céramique fritté à base de nitrure de silicium et de ²-eucryptite comprenant une étape de réalisation d'un premier mélange (101) d'une poudre de nitrure de silicium sous forme cristalline et d'une poudre d'un premier aluminosilicate de lithium sous forme cristalline dont la composition est la suivante (Li2O) x (Al2O3) y (SiO2) z , la composition d'aluminosilicate de lithium étant telle que l'ensemble des fractions molaires (x, y, z) est différent de l'ensemble (1, 1, 2).</description><subject>ARTIFICIAL STONE</subject><subject>CEMENTS</subject><subject>CERAMICS</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</subject><subject>CONCRETE</subject><subject>LIME, MAGNESIA</subject><subject>MANUFACTURE OR TREATMENT OF NANOSTRUCTURES</subject><subject>MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES</subject><subject>METALLURGY</subject><subject>NANOTECHNOLOGY</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>REFRACTORIES</subject><subject>SLAG</subject><subject>SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF NATURAL STONE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBNNQIOAP94E0MQUtQkE0SBRUNNHF3sApjm3ZR8HvccEDqKaYmXXzuEJf0VGcaOFZwpOYbFxSLKIgi8yL2KoUWdjTyAU1DlTEi60MolkciIOjEcot3jZ_ktZ726wm9gW7HzcNnfv76dIixQElsUWADv2tMwfT7c2xM38kX4E4Omc</recordid><startdate>20111102</startdate><enddate>20111102</enddate><creator>CHEVALIER, JEROME</creator><creator>VITUPIER, YANN</creator><creator>REVERON, HELEN</creator><creator>FANTOZZI, GILBERT</creator><creator>PELLETANT, AURELIEN</creator><creator>BLANCHARD, LAURENT</creator><scope>EVB</scope></search><sort><creationdate>20111102</creationdate><title>Method of making a composite ceramic material based on silicon nitride and beta-eucryptite</title><author>CHEVALIER, JEROME ; VITUPIER, YANN ; REVERON, HELEN ; FANTOZZI, GILBERT ; PELLETANT, AURELIEN ; BLANCHARD, LAURENT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP2383243A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2011</creationdate><topic>ARTIFICIAL STONE</topic><topic>CEMENTS</topic><topic>CERAMICS</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</topic><topic>CONCRETE</topic><topic>LIME, MAGNESIA</topic><topic>MANUFACTURE OR TREATMENT OF NANOSTRUCTURES</topic><topic>MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES</topic><topic>METALLURGY</topic><topic>NANOTECHNOLOGY</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>REFRACTORIES</topic><topic>SLAG</topic><topic>SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF NATURAL STONE</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEVALIER, JEROME</creatorcontrib><creatorcontrib>VITUPIER, YANN</creatorcontrib><creatorcontrib>REVERON, HELEN</creatorcontrib><creatorcontrib>FANTOZZI, GILBERT</creatorcontrib><creatorcontrib>PELLETANT, AURELIEN</creatorcontrib><creatorcontrib>BLANCHARD, LAURENT</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEVALIER, JEROME</au><au>VITUPIER, YANN</au><au>REVERON, HELEN</au><au>FANTOZZI, GILBERT</au><au>PELLETANT, AURELIEN</au><au>BLANCHARD, LAURENT</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method of making a composite ceramic material based on silicon nitride and beta-eucryptite</title><date>2011-11-02</date><risdate>2011</risdate><abstract>The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The process of fabricating a sintered ceramic composite material made of silicon nitride and beta -eucryptite materials, comprises creating (101) a first mixture of silicon nitride powder in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, performing (105) a first heat treatment on silicon nitride composite and the first lithium aluminosilicate obtained from the first mixture to sinter silicon nitride and to obtain a ceramic composite made of silicon nitride and beta -eucryptites, and performing a second heat treatment to crystallize the beta -eucryptites. The lithium aluminosilicate composition is represented as (Li 2O) x(Al 2O 3) y(SiO 2) z, where entire molar fractions (x, y, z) is different from (1, 1, 2). The first heat treatment is carried out at a first temperature greater than melting temperature of beta -eucryptite under the operating conditions. The second heat treatment is carried out by maintaining the ceramic composite and beta -eucryptite at a temperature of 500-800[deg] C, and comprises performing nucleation at a specified temperature and growth at a temperature greater than the nucleation temperature. The silicon nitride powder is washed to remove the silica polluting the powder before mixing it with the lithium aluminosilicate. The first lithium aluminosilicate powder is fabricated by producing a mixture of lithium carbonate, alumina and silica powder, and calcining a powder obtained from the mixture to obtain the first lithium aluminosilicate. The calcination step comprises raising the temperature to reach a maximum and then decreasing the temperature. The crystals of silicon nitride powder are nanometric or micrometric, and the crystals of the first lithium aluminosilicate powder are nanometric or micrometric.
Procédé de fabrication d'un composite céramique fritté à base de nitrure de silicium et de ²-eucryptite comprenant une étape de réalisation d'un premier mélange (101) d'une poudre de nitrure de silicium sous forme cristalline et d'une poudre d'un premier aluminosilicate de lithium sous forme cristalline dont la composition est la suivante (Li2O) x (Al2O3) y (SiO2) z , la composition d'aluminosilicate de lithium étant telle que l'ensemble des fractions molaires (x, y, z) est différent de l'ensemble (1, 1, 2).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP2383243A2 |
source | esp@cenet |
subjects | ARTIFICIAL STONE CEMENTS CERAMICS CHEMISTRY COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS CONCRETE LIME, MAGNESIA MANUFACTURE OR TREATMENT OF NANOSTRUCTURES MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES METALLURGY NANOTECHNOLOGY OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PERFORMING OPERATIONS PHYSICS REFRACTORIES SLAG SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES TRANSPORTING TREATMENT OF NATURAL STONE |
title | Method of making a composite ceramic material based on silicon nitride and beta-eucryptite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEVALIER,%20JEROME&rft.date=2011-11-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP2383243A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |