METHOD FOR MANUFACTURING VERY HIGH STRENGTH, COLD-ROLLED, DUAL PHASE STEEL SHEETS, AND SHEETS THUS PRODUCED
Cold-rolled and annealed steel sheet comprises (in wt.%): carbon (0.055-0.095); manganese (2-2.6); silicon (0.005-0.35); sulfur (= 0.005); phosphorus (= 0.05); aluminum (0.1-0.3); molybdenum (0.05-0.25); chromium (0.2-0.5); nickel (= 0.1); niobium (0.01-0.04); titanium (0.01-0.05); boron (0.0005-0.0...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | VINCI, CATHERINE MOULIN, ANTOINE GOUNE, MOHAMED RESTREPO GARCES, GLORIA HEBERT, VERONIQUE WATERSCHOOT, TOM |
description | Cold-rolled and annealed steel sheet comprises (in wt.%): carbon (0.055-0.095); manganese (2-2.6); silicon (0.005-0.35); sulfur (= 0.005); phosphorus (= 0.05); aluminum (0.1-0.3); molybdenum (0.05-0.25); chromium (0.2-0.5); nickel (= 0.1); niobium (0.01-0.04); titanium (0.01-0.05); boron (0.0005-0.0025); and nitrogen (0.002-0.007), where the rest of the composition is iron and impurities. An independent claim is included for a process for preparation of the steel sheet comprising pouring the steel in the form of semi-product, carrying the semi-product at a temperature of 1150-1250[deg] C, hot rolling of the semi-finished product with a temperature of end-rolling of greater than argon (Ar3) to obtain a hot rolled product, coiling the hot-rolled at a temperature of 500-570[deg] C, cleaning the hot rolled product, making cold rolling with a reduction rate of 30-80% to obtain cold rolled product, heating the cold rolled product having a speed of 1-5[deg] C/s and annealing temperature including Ac1+40[deg] C-Ac3-30[deg] C , (where Ac1 is initial temperature of allotropic transformation, and Ac3 is final temperature of allotropic transformation) for 30-300 seconds to obtain a heated and annealed product with a structure comprising austenite and cooling the product to a temperature below the initial temperature of formation of martensite (M s) temperature with sufficient speed so that austenite is completely transformed to martensite. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP2291547A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP2291547A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP2291547A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-wz1AO7Qq4hhy114hTUpyEZxKkbgoWqjvjw59AKf_H7519uhI2CHUzkOnbKyVluhb28CF_BW4bRiCeLKNcA7aGSy8M4YwB4zKQM8q0E8QGQhMJCEHZXF5EI4Beu8wasJttrqPzzntlm4yqEk0F2l6D2mexlt6pc9AfVWdy-PhpMr9H-QLLtQ1tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR MANUFACTURING VERY HIGH STRENGTH, COLD-ROLLED, DUAL PHASE STEEL SHEETS, AND SHEETS THUS PRODUCED</title><source>esp@cenet</source><creator>VINCI, CATHERINE ; MOULIN, ANTOINE ; GOUNE, MOHAMED ; RESTREPO GARCES, GLORIA ; HEBERT, VERONIQUE ; WATERSCHOOT, TOM</creator><creatorcontrib>VINCI, CATHERINE ; MOULIN, ANTOINE ; GOUNE, MOHAMED ; RESTREPO GARCES, GLORIA ; HEBERT, VERONIQUE ; WATERSCHOOT, TOM</creatorcontrib><description>Cold-rolled and annealed steel sheet comprises (in wt.%): carbon (0.055-0.095); manganese (2-2.6); silicon (0.005-0.35); sulfur (= 0.005); phosphorus (= 0.05); aluminum (0.1-0.3); molybdenum (0.05-0.25); chromium (0.2-0.5); nickel (= 0.1); niobium (0.01-0.04); titanium (0.01-0.05); boron (0.0005-0.0025); and nitrogen (0.002-0.007), where the rest of the composition is iron and impurities. An independent claim is included for a process for preparation of the steel sheet comprising pouring the steel in the form of semi-product, carrying the semi-product at a temperature of 1150-1250[deg] C, hot rolling of the semi-finished product with a temperature of end-rolling of greater than argon (Ar3) to obtain a hot rolled product, coiling the hot-rolled at a temperature of 500-570[deg] C, cleaning the hot rolled product, making cold rolling with a reduction rate of 30-80% to obtain cold rolled product, heating the cold rolled product having a speed of 1-5[deg] C/s and annealing temperature including Ac1+40[deg] C-Ac3-30[deg] C , (where Ac1 is initial temperature of allotropic transformation, and Ac3 is final temperature of allotropic transformation) for 30-300 seconds to obtain a heated and annealed product with a structure comprising austenite and cooling the product to a temperature below the initial temperature of formation of martensite (M s) temperature with sufficient speed so that austenite is completely transformed to martensite.</description><language>eng ; fre ; ger</language><subject>ALLOYS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; FERROUS OR NON-FERROUS ALLOYS ; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS ; METALLURGY ; METALLURGY OF IRON ; MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20110309&DB=EPODOC&CC=EP&NR=2291547A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20110309&DB=EPODOC&CC=EP&NR=2291547A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>VINCI, CATHERINE</creatorcontrib><creatorcontrib>MOULIN, ANTOINE</creatorcontrib><creatorcontrib>GOUNE, MOHAMED</creatorcontrib><creatorcontrib>RESTREPO GARCES, GLORIA</creatorcontrib><creatorcontrib>HEBERT, VERONIQUE</creatorcontrib><creatorcontrib>WATERSCHOOT, TOM</creatorcontrib><title>METHOD FOR MANUFACTURING VERY HIGH STRENGTH, COLD-ROLLED, DUAL PHASE STEEL SHEETS, AND SHEETS THUS PRODUCED</title><description>Cold-rolled and annealed steel sheet comprises (in wt.%): carbon (0.055-0.095); manganese (2-2.6); silicon (0.005-0.35); sulfur (= 0.005); phosphorus (= 0.05); aluminum (0.1-0.3); molybdenum (0.05-0.25); chromium (0.2-0.5); nickel (= 0.1); niobium (0.01-0.04); titanium (0.01-0.05); boron (0.0005-0.0025); and nitrogen (0.002-0.007), where the rest of the composition is iron and impurities. An independent claim is included for a process for preparation of the steel sheet comprising pouring the steel in the form of semi-product, carrying the semi-product at a temperature of 1150-1250[deg] C, hot rolling of the semi-finished product with a temperature of end-rolling of greater than argon (Ar3) to obtain a hot rolled product, coiling the hot-rolled at a temperature of 500-570[deg] C, cleaning the hot rolled product, making cold rolling with a reduction rate of 30-80% to obtain cold rolled product, heating the cold rolled product having a speed of 1-5[deg] C/s and annealing temperature including Ac1+40[deg] C-Ac3-30[deg] C , (where Ac1 is initial temperature of allotropic transformation, and Ac3 is final temperature of allotropic transformation) for 30-300 seconds to obtain a heated and annealed product with a structure comprising austenite and cooling the product to a temperature below the initial temperature of formation of martensite (M s) temperature with sufficient speed so that austenite is completely transformed to martensite.</description><subject>ALLOYS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</subject><subject>METALLURGY</subject><subject>METALLURGY OF IRON</subject><subject>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-wz1AO7Qq4hhy114hTUpyEZxKkbgoWqjvjw59AKf_H7519uhI2CHUzkOnbKyVluhb28CF_BW4bRiCeLKNcA7aGSy8M4YwB4zKQM8q0E8QGQhMJCEHZXF5EI4Beu8wasJttrqPzzntlm4yqEk0F2l6D2mexlt6pc9AfVWdy-PhpMr9H-QLLtQ1tQ</recordid><startdate>20110309</startdate><enddate>20110309</enddate><creator>VINCI, CATHERINE</creator><creator>MOULIN, ANTOINE</creator><creator>GOUNE, MOHAMED</creator><creator>RESTREPO GARCES, GLORIA</creator><creator>HEBERT, VERONIQUE</creator><creator>WATERSCHOOT, TOM</creator><scope>EVB</scope></search><sort><creationdate>20110309</creationdate><title>METHOD FOR MANUFACTURING VERY HIGH STRENGTH, COLD-ROLLED, DUAL PHASE STEEL SHEETS, AND SHEETS THUS PRODUCED</title><author>VINCI, CATHERINE ; MOULIN, ANTOINE ; GOUNE, MOHAMED ; RESTREPO GARCES, GLORIA ; HEBERT, VERONIQUE ; WATERSCHOOT, TOM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP2291547A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2011</creationdate><topic>ALLOYS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</topic><topic>METALLURGY</topic><topic>METALLURGY OF IRON</topic><topic>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>VINCI, CATHERINE</creatorcontrib><creatorcontrib>MOULIN, ANTOINE</creatorcontrib><creatorcontrib>GOUNE, MOHAMED</creatorcontrib><creatorcontrib>RESTREPO GARCES, GLORIA</creatorcontrib><creatorcontrib>HEBERT, VERONIQUE</creatorcontrib><creatorcontrib>WATERSCHOOT, TOM</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>VINCI, CATHERINE</au><au>MOULIN, ANTOINE</au><au>GOUNE, MOHAMED</au><au>RESTREPO GARCES, GLORIA</au><au>HEBERT, VERONIQUE</au><au>WATERSCHOOT, TOM</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR MANUFACTURING VERY HIGH STRENGTH, COLD-ROLLED, DUAL PHASE STEEL SHEETS, AND SHEETS THUS PRODUCED</title><date>2011-03-09</date><risdate>2011</risdate><abstract>Cold-rolled and annealed steel sheet comprises (in wt.%): carbon (0.055-0.095); manganese (2-2.6); silicon (0.005-0.35); sulfur (= 0.005); phosphorus (= 0.05); aluminum (0.1-0.3); molybdenum (0.05-0.25); chromium (0.2-0.5); nickel (= 0.1); niobium (0.01-0.04); titanium (0.01-0.05); boron (0.0005-0.0025); and nitrogen (0.002-0.007), where the rest of the composition is iron and impurities. An independent claim is included for a process for preparation of the steel sheet comprising pouring the steel in the form of semi-product, carrying the semi-product at a temperature of 1150-1250[deg] C, hot rolling of the semi-finished product with a temperature of end-rolling of greater than argon (Ar3) to obtain a hot rolled product, coiling the hot-rolled at a temperature of 500-570[deg] C, cleaning the hot rolled product, making cold rolling with a reduction rate of 30-80% to obtain cold rolled product, heating the cold rolled product having a speed of 1-5[deg] C/s and annealing temperature including Ac1+40[deg] C-Ac3-30[deg] C , (where Ac1 is initial temperature of allotropic transformation, and Ac3 is final temperature of allotropic transformation) for 30-300 seconds to obtain a heated and annealed product with a structure comprising austenite and cooling the product to a temperature below the initial temperature of formation of martensite (M s) temperature with sufficient speed so that austenite is completely transformed to martensite.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP2291547A1 |
source | esp@cenet |
subjects | ALLOYS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL FERROUS OR NON-FERROUS ALLOYS GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS METALLURGY METALLURGY OF IRON MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TREATMENT OF ALLOYS OR NON-FERROUS METALS |
title | METHOD FOR MANUFACTURING VERY HIGH STRENGTH, COLD-ROLLED, DUAL PHASE STEEL SHEETS, AND SHEETS THUS PRODUCED |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=VINCI,%20CATHERINE&rft.date=2011-03-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP2291547A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |