System and method for increasing feeder link capacity in a satellite communications system

A system and method for increasing feeder link capacity in a satellite communication system (100), wherein a gateway (108) communicates with a satellite (102) over a feeder link (112), and wherein the satellite (102) communicates with terrestrial user terminals (106) over a user link (110). A feeder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: SCHIFF, LEONARD N
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SCHIFF, LEONARD N
description A system and method for increasing feeder link capacity in a satellite communication system (100), wherein a gateway (108) communicates with a satellite (102) over a feeder link (112), and wherein the satellite (102) communicates with terrestrial user terminals (106) over a user link (110). A feeder link signal (112) is produced by multiplexing a first BPSK signal and a second BPSK signal (402). The feeder link signal (612) is QPSK modulated, QPSK spread (402). The feeder link signal (612) is transmitted from the gateway (108) to the satellite (102). The satellite (102) demultiplexes the feeder link signal (612), recovering the first and second BPSK signals (702, 704, 706). The first and second BPSK signals are then modulated (502-508)(602-608), to produce a first and second user link signal (832, 834). The user link signals (832, 834) are BPSK modulated, QPSK spread. The user link signals (832,834) are transmitted from the satellite (102) to the user terminals (106).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1976154A3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1976154A3</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1976154A33</originalsourceid><addsrcrecordid>eNqNjL0KwkAQBtNYiPoO-wIWIf5gKRKxFLSyCcvliy7e7YXsWvj2BvEBrKaYYabF7fI2RyLWlhL8kVvq8kCiYQCb6J06oMVAUfRJgXsO4u_RE5OxI0ZxUMgpvVQCu2Q1su9zXkw6jobFj7OCjvX1cFqizw1sPEHhTX0ud9tNuV7tq-qP5APHnTsG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for increasing feeder link capacity in a satellite communications system</title><source>esp@cenet</source><creator>SCHIFF, LEONARD N</creator><creatorcontrib>SCHIFF, LEONARD N</creatorcontrib><description>A system and method for increasing feeder link capacity in a satellite communication system (100), wherein a gateway (108) communicates with a satellite (102) over a feeder link (112), and wherein the satellite (102) communicates with terrestrial user terminals (106) over a user link (110). A feeder link signal (112) is produced by multiplexing a first BPSK signal and a second BPSK signal (402). The feeder link signal (612) is QPSK modulated, QPSK spread (402). The feeder link signal (612) is transmitted from the gateway (108) to the satellite (102). The satellite (102) demultiplexes the feeder link signal (612), recovering the first and second BPSK signals (702, 704, 706). The first and second BPSK signals are then modulated (502-508)(602-608), to produce a first and second user link signal (832, 834). The user link signals (832, 834) are BPSK modulated, QPSK spread. The user link signals (832,834) are transmitted from the satellite (102) to the user terminals (106).</description><language>eng ; fre ; ger</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20101222&amp;DB=EPODOC&amp;CC=EP&amp;NR=1976154A3$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20101222&amp;DB=EPODOC&amp;CC=EP&amp;NR=1976154A3$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SCHIFF, LEONARD N</creatorcontrib><title>System and method for increasing feeder link capacity in a satellite communications system</title><description>A system and method for increasing feeder link capacity in a satellite communication system (100), wherein a gateway (108) communicates with a satellite (102) over a feeder link (112), and wherein the satellite (102) communicates with terrestrial user terminals (106) over a user link (110). A feeder link signal (112) is produced by multiplexing a first BPSK signal and a second BPSK signal (402). The feeder link signal (612) is QPSK modulated, QPSK spread (402). The feeder link signal (612) is transmitted from the gateway (108) to the satellite (102). The satellite (102) demultiplexes the feeder link signal (612), recovering the first and second BPSK signals (702, 704, 706). The first and second BPSK signals are then modulated (502-508)(602-608), to produce a first and second user link signal (832, 834). The user link signals (832, 834) are BPSK modulated, QPSK spread. The user link signals (832,834) are transmitted from the satellite (102) to the user terminals (106).</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0KwkAQBtNYiPoO-wIWIf5gKRKxFLSyCcvliy7e7YXsWvj2BvEBrKaYYabF7fI2RyLWlhL8kVvq8kCiYQCb6J06oMVAUfRJgXsO4u_RE5OxI0ZxUMgpvVQCu2Q1su9zXkw6jobFj7OCjvX1cFqizw1sPEHhTX0ud9tNuV7tq-qP5APHnTsG</recordid><startdate>20101222</startdate><enddate>20101222</enddate><creator>SCHIFF, LEONARD N</creator><scope>EVB</scope></search><sort><creationdate>20101222</creationdate><title>System and method for increasing feeder link capacity in a satellite communications system</title><author>SCHIFF, LEONARD N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1976154A33</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2010</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>SCHIFF, LEONARD N</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SCHIFF, LEONARD N</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for increasing feeder link capacity in a satellite communications system</title><date>2010-12-22</date><risdate>2010</risdate><abstract>A system and method for increasing feeder link capacity in a satellite communication system (100), wherein a gateway (108) communicates with a satellite (102) over a feeder link (112), and wherein the satellite (102) communicates with terrestrial user terminals (106) over a user link (110). A feeder link signal (112) is produced by multiplexing a first BPSK signal and a second BPSK signal (402). The feeder link signal (612) is QPSK modulated, QPSK spread (402). The feeder link signal (612) is transmitted from the gateway (108) to the satellite (102). The satellite (102) demultiplexes the feeder link signal (612), recovering the first and second BPSK signals (702, 704, 706). The first and second BPSK signals are then modulated (502-508)(602-608), to produce a first and second user link signal (832, 834). The user link signals (832, 834) are BPSK modulated, QPSK spread. The user link signals (832,834) are transmitted from the satellite (102) to the user terminals (106).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP1976154A3
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title System and method for increasing feeder link capacity in a satellite communications system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SCHIFF,%20LEONARD%20N&rft.date=2010-12-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1976154A3%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true