Pressure swing CVI/CVD

Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprisin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WALKER, TERRENCE B, WAGHRAY, AKSHAY
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WALKER, TERRENCE B
WAGHRAY, AKSHAY
description Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1936006A3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1936006A3</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1936006A33</originalsourceid><addsrcrecordid>eNrjZBALKEotLi4tSlUoLs_MS1dwDvPUdw5z4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BhpbGZgYGZo7GxkQoAQAX_SBK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pressure swing CVI/CVD</title><source>esp@cenet</source><creator>WALKER, TERRENCE B ; WAGHRAY, AKSHAY</creator><creatorcontrib>WALKER, TERRENCE B ; WAGHRAY, AKSHAY</creatorcontrib><description>Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.</description><language>eng ; fre ; ger</language><subject>ARTIFICIAL STONE ; CEMENTS ; CERAMICS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS ; CONCRETE ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; LIME, MAGNESIA ; METALLURGY ; REFRACTORIES ; SLAG ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TREATMENT OF NATURAL STONE</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100901&amp;DB=EPODOC&amp;CC=EP&amp;NR=1936006A3$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100901&amp;DB=EPODOC&amp;CC=EP&amp;NR=1936006A3$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WALKER, TERRENCE B</creatorcontrib><creatorcontrib>WAGHRAY, AKSHAY</creatorcontrib><title>Pressure swing CVI/CVD</title><description>Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.</description><subject>ARTIFICIAL STONE</subject><subject>CEMENTS</subject><subject>CERAMICS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</subject><subject>CONCRETE</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>LIME, MAGNESIA</subject><subject>METALLURGY</subject><subject>REFRACTORIES</subject><subject>SLAG</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TREATMENT OF NATURAL STONE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBALKEotLi4tSlUoLs_MS1dwDvPUdw5z4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BhpbGZgYGZo7GxkQoAQAX_SBK</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>WALKER, TERRENCE B</creator><creator>WAGHRAY, AKSHAY</creator><scope>EVB</scope></search><sort><creationdate>20100901</creationdate><title>Pressure swing CVI/CVD</title><author>WALKER, TERRENCE B ; WAGHRAY, AKSHAY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1936006A33</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2010</creationdate><topic>ARTIFICIAL STONE</topic><topic>CEMENTS</topic><topic>CERAMICS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</topic><topic>CONCRETE</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>LIME, MAGNESIA</topic><topic>METALLURGY</topic><topic>REFRACTORIES</topic><topic>SLAG</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TREATMENT OF NATURAL STONE</topic><toplevel>online_resources</toplevel><creatorcontrib>WALKER, TERRENCE B</creatorcontrib><creatorcontrib>WAGHRAY, AKSHAY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WALKER, TERRENCE B</au><au>WAGHRAY, AKSHAY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pressure swing CVI/CVD</title><date>2010-09-01</date><risdate>2010</risdate><abstract>Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP1936006A3
source esp@cenet
subjects ARTIFICIAL STONE
CEMENTS
CERAMICS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS
CONCRETE
DIFFUSION TREATMENT OF METALLIC MATERIAL
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
LIME, MAGNESIA
METALLURGY
REFRACTORIES
SLAG
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TREATMENT OF NATURAL STONE
title Pressure swing CVI/CVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WALKER,%20TERRENCE%20B&rft.date=2010-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1936006A3%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true