Pressure swing CVI/CVD
Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprisin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WALKER, TERRENCE B WAGHRAY, AKSHAY |
description | Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1936006A3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1936006A3</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1936006A33</originalsourceid><addsrcrecordid>eNrjZBALKEotLi4tSlUoLs_MS1dwDvPUdw5z4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BhpbGZgYGZo7GxkQoAQAX_SBK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pressure swing CVI/CVD</title><source>esp@cenet</source><creator>WALKER, TERRENCE B ; WAGHRAY, AKSHAY</creator><creatorcontrib>WALKER, TERRENCE B ; WAGHRAY, AKSHAY</creatorcontrib><description>Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.</description><language>eng ; fre ; ger</language><subject>ARTIFICIAL STONE ; CEMENTS ; CERAMICS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS ; CONCRETE ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; LIME, MAGNESIA ; METALLURGY ; REFRACTORIES ; SLAG ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TREATMENT OF NATURAL STONE</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100901&DB=EPODOC&CC=EP&NR=1936006A3$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100901&DB=EPODOC&CC=EP&NR=1936006A3$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WALKER, TERRENCE B</creatorcontrib><creatorcontrib>WAGHRAY, AKSHAY</creatorcontrib><title>Pressure swing CVI/CVD</title><description>Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.</description><subject>ARTIFICIAL STONE</subject><subject>CEMENTS</subject><subject>CERAMICS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</subject><subject>CONCRETE</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>LIME, MAGNESIA</subject><subject>METALLURGY</subject><subject>REFRACTORIES</subject><subject>SLAG</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TREATMENT OF NATURAL STONE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBALKEotLi4tSlUoLs_MS1dwDvPUdw5z4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8a4BhpbGZgYGZo7GxkQoAQAX_SBK</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>WALKER, TERRENCE B</creator><creator>WAGHRAY, AKSHAY</creator><scope>EVB</scope></search><sort><creationdate>20100901</creationdate><title>Pressure swing CVI/CVD</title><author>WALKER, TERRENCE B ; WAGHRAY, AKSHAY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1936006A33</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2010</creationdate><topic>ARTIFICIAL STONE</topic><topic>CEMENTS</topic><topic>CERAMICS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</topic><topic>CONCRETE</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>LIME, MAGNESIA</topic><topic>METALLURGY</topic><topic>REFRACTORIES</topic><topic>SLAG</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TREATMENT OF NATURAL STONE</topic><toplevel>online_resources</toplevel><creatorcontrib>WALKER, TERRENCE B</creatorcontrib><creatorcontrib>WAGHRAY, AKSHAY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WALKER, TERRENCE B</au><au>WAGHRAY, AKSHAY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pressure swing CVI/CVD</title><date>2010-09-01</date><risdate>2010</risdate><abstract>Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of an reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of thc gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density. Alternatively, step changes in pressure during the course of the densification process may be made to enhance the rate of densification. This method reduces the number of cycles and the required intermediate machining steps necessary to densify preforms.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP1936006A3 |
source | esp@cenet |
subjects | ARTIFICIAL STONE CEMENTS CERAMICS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS CONCRETE DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL LIME, MAGNESIA METALLURGY REFRACTORIES SLAG SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TREATMENT OF NATURAL STONE |
title | Pressure swing CVI/CVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WALKER,%20TERRENCE%20B&rft.date=2010-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1936006A3%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |