METHOD FOR PRODUCTION OF A GLAZED PIECE PROVIDED WITH A MULTI-LAYER COATING
Method of manufacturing glazed pieces provided with a multi-layer coating on glass substrate comprises: depositing a first transparent dielectric layer, followed by an infra-red radiation reflecting functional layer; depositing first and second protective layers having specified electronegativity di...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DEPAUW, Jean-Michel DECROUPET, Daniel |
description | Method of manufacturing glazed pieces provided with a multi-layer coating on glass substrate comprises: depositing a first transparent dielectric layer, followed by an infra-red radiation reflecting functional layer; depositing first and second protective layers having specified electronegativity differences to oxygen; and depositing at least one second transparent dielectric layer. The fabrication of a glazed piece provided with a multi-layer coating deposited by cathodic atomization under reduced pressure on a glass substrate consists of: (a) depositing a first transparent dielectric layer, followed by a functional layer based on a material which reflects infra-red radiation; (b) depositing a first protective layer with at most 3 nm of a material having an electronegativity difference to oxygen of less than 1.9, followed by the deposition of a second protective layer with at most 7 nm of a material with an electronegativity difference to oxygen of greater than 1.4; and (c) depositing at least one second transparent dielectric layer. An Independent claim is also included for a glazed piece provided with a multi-layer coating fabricated by this method. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1517866B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1517866B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1517866B23</originalsourceid><addsrcrecordid>eNrjZPD2dQ3x8HdRcPMPUggI8ncJdQ7x9PdT8HdTcFRw93GMcnVRCPB0dXYFSYZ5ugC54Z4hHkBJ31CfEE9dH8dI1yAFZ3_HEE8_dx4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEu8aYGhqaG5hZuZkZEyEEgAHdCz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR PRODUCTION OF A GLAZED PIECE PROVIDED WITH A MULTI-LAYER COATING</title><source>esp@cenet</source><creator>DEPAUW, Jean-Michel ; DECROUPET, Daniel</creator><creatorcontrib>DEPAUW, Jean-Michel ; DECROUPET, Daniel</creatorcontrib><description>Method of manufacturing glazed pieces provided with a multi-layer coating on glass substrate comprises: depositing a first transparent dielectric layer, followed by an infra-red radiation reflecting functional layer; depositing first and second protective layers having specified electronegativity differences to oxygen; and depositing at least one second transparent dielectric layer. The fabrication of a glazed piece provided with a multi-layer coating deposited by cathodic atomization under reduced pressure on a glass substrate consists of: (a) depositing a first transparent dielectric layer, followed by a functional layer based on a material which reflects infra-red radiation; (b) depositing a first protective layer with at most 3 nm of a material having an electronegativity difference to oxygen of less than 1.9, followed by the deposition of a second protective layer with at most 7 nm of a material with an electronegativity difference to oxygen of greater than 1.4; and (c) depositing at least one second transparent dielectric layer. An Independent claim is also included for a glazed piece provided with a multi-layer coating fabricated by this method.</description><language>eng ; fre ; ger</language><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; GLASS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; JOINING GLASS TO GLASS OR OTHER MATERIALS ; LAYERED PRODUCTS ; LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM ; METALLURGY ; MINERAL OR SLAG WOOL ; PERFORMING OPERATIONS ; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS ; SURFACE TREATMENT OF GLASS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190102&DB=EPODOC&CC=EP&NR=1517866B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190102&DB=EPODOC&CC=EP&NR=1517866B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DEPAUW, Jean-Michel</creatorcontrib><creatorcontrib>DECROUPET, Daniel</creatorcontrib><title>METHOD FOR PRODUCTION OF A GLAZED PIECE PROVIDED WITH A MULTI-LAYER COATING</title><description>Method of manufacturing glazed pieces provided with a multi-layer coating on glass substrate comprises: depositing a first transparent dielectric layer, followed by an infra-red radiation reflecting functional layer; depositing first and second protective layers having specified electronegativity differences to oxygen; and depositing at least one second transparent dielectric layer. The fabrication of a glazed piece provided with a multi-layer coating deposited by cathodic atomization under reduced pressure on a glass substrate consists of: (a) depositing a first transparent dielectric layer, followed by a functional layer based on a material which reflects infra-red radiation; (b) depositing a first protective layer with at most 3 nm of a material having an electronegativity difference to oxygen of less than 1.9, followed by the deposition of a second protective layer with at most 7 nm of a material with an electronegativity difference to oxygen of greater than 1.4; and (c) depositing at least one second transparent dielectric layer. An Independent claim is also included for a glazed piece provided with a multi-layer coating fabricated by this method.</description><subject>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>GLASS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>JOINING GLASS TO GLASS OR OTHER MATERIALS</subject><subject>LAYERED PRODUCTS</subject><subject>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</subject><subject>METALLURGY</subject><subject>MINERAL OR SLAG WOOL</subject><subject>PERFORMING OPERATIONS</subject><subject>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</subject><subject>SURFACE TREATMENT OF GLASS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2dQ3x8HdRcPMPUggI8ncJdQ7x9PdT8HdTcFRw93GMcnVRCPB0dXYFSYZ5ugC54Z4hHkBJ31CfEE9dH8dI1yAFZ3_HEE8_dx4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEu8aYGhqaG5hZuZkZEyEEgAHdCz4</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>DEPAUW, Jean-Michel</creator><creator>DECROUPET, Daniel</creator><scope>EVB</scope></search><sort><creationdate>20190102</creationdate><title>METHOD FOR PRODUCTION OF A GLAZED PIECE PROVIDED WITH A MULTI-LAYER COATING</title><author>DEPAUW, Jean-Michel ; DECROUPET, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1517866B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2019</creationdate><topic>CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>GLASS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>JOINING GLASS TO GLASS OR OTHER MATERIALS</topic><topic>LAYERED PRODUCTS</topic><topic>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</topic><topic>METALLURGY</topic><topic>MINERAL OR SLAG WOOL</topic><topic>PERFORMING OPERATIONS</topic><topic>SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS</topic><topic>SURFACE TREATMENT OF GLASS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>DEPAUW, Jean-Michel</creatorcontrib><creatorcontrib>DECROUPET, Daniel</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DEPAUW, Jean-Michel</au><au>DECROUPET, Daniel</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR PRODUCTION OF A GLAZED PIECE PROVIDED WITH A MULTI-LAYER COATING</title><date>2019-01-02</date><risdate>2019</risdate><abstract>Method of manufacturing glazed pieces provided with a multi-layer coating on glass substrate comprises: depositing a first transparent dielectric layer, followed by an infra-red radiation reflecting functional layer; depositing first and second protective layers having specified electronegativity differences to oxygen; and depositing at least one second transparent dielectric layer. The fabrication of a glazed piece provided with a multi-layer coating deposited by cathodic atomization under reduced pressure on a glass substrate consists of: (a) depositing a first transparent dielectric layer, followed by a functional layer based on a material which reflects infra-red radiation; (b) depositing a first protective layer with at most 3 nm of a material having an electronegativity difference to oxygen of less than 1.9, followed by the deposition of a second protective layer with at most 7 nm of a material with an electronegativity difference to oxygen of greater than 1.4; and (c) depositing at least one second transparent dielectric layer. An Independent claim is also included for a glazed piece provided with a multi-layer coating fabricated by this method.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP1517866B2 |
source | esp@cenet |
subjects | CHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUSENAMELS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL GLASS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL JOINING GLASS TO GLASS OR OTHER MATERIALS LAYERED PRODUCTS LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM METALLURGY MINERAL OR SLAG WOOL PERFORMING OPERATIONS SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS,MINERALS OR SLAGS SURFACE TREATMENT OF GLASS SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING |
title | METHOD FOR PRODUCTION OF A GLAZED PIECE PROVIDED WITH A MULTI-LAYER COATING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DEPAUW,%20Jean-Michel&rft.date=2019-01-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1517866B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |