Stirling/pulse tube hybrid cryocooler with gas flow shunt

A two-stage hybrid cryocooler (20) includes a first-stage Stirling expander (22) having a first-stage regenerator (24) having a first-stage-regenerator inlet (26) a nd a first-stage-regenerator outlet (28), and a second-stage pulse tube expander (32). The second-stage pulse tube expander (32) includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PRICE, KENNETH D, CICCARELLI, KEN J, KIRKCONNELL, CARL S
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PRICE, KENNETH D
CICCARELLI, KEN J
KIRKCONNELL, CARL S
description A two-stage hybrid cryocooler (20) includes a first-stage Stirling expander (22) having a first-stage regenerator (24) having a first-stage-regenerator inlet (26) a nd a first-stage-regenerator outlet (28), and a second-stage pulse tube expander (32). The second-stage pulse tube expander (32) includes a second-stage regenerator (34) having a second-stage regenerator inlet (36) in gaseous communication with the first-stage regenerator outlet (28), and a second-stage regenerator outlet (40), and a pulse tube (42) having a pulse-tube inlet (44) in gaseous communication with the second-stage regenerator outlet (40), and a pulse-tube outlet (48). The second-stage regenerator (34) and the pulse tube (42) together provide a first gas-flow path (43) between the first-stage regenerator (24) and the pulse-tube outlet (48). A pulse tube pressure drop structure (50) has a pulse-tube-pressure-drop inlet in gaseous communication with the pulse-tube outlet (48), and a pulse-tube pressure-drop outlet, and a gas volume is in gaseous communication with the pulse-tube pressure-drop outlet. A gas flow shunt (60) provides gaseous communication between the first-stage regenerator (24) and the pulse-tube outlet (48). The gas flow shunt (60) provides a second gas-flow path (62) between the first-stage regenerator (24) and the pulse-tube outlet (48).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1503154B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1503154B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1503154B13</originalsourceid><addsrcrecordid>eNrjZLAMLsksysnMS9cvKM0pTlUoKU1KVcioTCrKTFFILqrMT87Pz0ktUijPLMlQSE8sVkjLyS9XKM4ozSvhYWBNSwRq4YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuAYamBsaGpiZOhsZEKAEADRUuiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Stirling/pulse tube hybrid cryocooler with gas flow shunt</title><source>esp@cenet</source><creator>PRICE, KENNETH D ; CICCARELLI, KEN J ; KIRKCONNELL, CARL S</creator><creatorcontrib>PRICE, KENNETH D ; CICCARELLI, KEN J ; KIRKCONNELL, CARL S</creatorcontrib><description>A two-stage hybrid cryocooler (20) includes a first-stage Stirling expander (22) having a first-stage regenerator (24) having a first-stage-regenerator inlet (26) a nd a first-stage-regenerator outlet (28), and a second-stage pulse tube expander (32). The second-stage pulse tube expander (32) includes a second-stage regenerator (34) having a second-stage regenerator inlet (36) in gaseous communication with the first-stage regenerator outlet (28), and a second-stage regenerator outlet (40), and a pulse tube (42) having a pulse-tube inlet (44) in gaseous communication with the second-stage regenerator outlet (40), and a pulse-tube outlet (48). The second-stage regenerator (34) and the pulse tube (42) together provide a first gas-flow path (43) between the first-stage regenerator (24) and the pulse-tube outlet (48). A pulse tube pressure drop structure (50) has a pulse-tube-pressure-drop inlet in gaseous communication with the pulse-tube outlet (48), and a pulse-tube pressure-drop outlet, and a gas volume is in gaseous communication with the pulse-tube pressure-drop outlet. A gas flow shunt (60) provides gaseous communication between the first-stage regenerator (24) and the pulse-tube outlet (48). The gas flow shunt (60) provides a second gas-flow path (62) between the first-stage regenerator (24) and the pulse-tube outlet (48).</description><language>eng ; fre ; ger</language><subject>BLASTING ; COMBINED HEATING AND REFRIGERATION SYSTEMS ; HEAT PUMP SYSTEMS ; HEATING ; LIGHTING ; LIQUEFACTION SOLIDIFICATION OF GASES ; MANUFACTURE OR STORAGE OF ICE ; MECHANICAL ENGINEERING ; REFRIGERATION MACHINES, PLANTS OR SYSTEMS ; REFRIGERATION OR COOLING ; WEAPONS</subject><creationdate>2009</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20090930&amp;DB=EPODOC&amp;CC=EP&amp;NR=1503154B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20090930&amp;DB=EPODOC&amp;CC=EP&amp;NR=1503154B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PRICE, KENNETH D</creatorcontrib><creatorcontrib>CICCARELLI, KEN J</creatorcontrib><creatorcontrib>KIRKCONNELL, CARL S</creatorcontrib><title>Stirling/pulse tube hybrid cryocooler with gas flow shunt</title><description>A two-stage hybrid cryocooler (20) includes a first-stage Stirling expander (22) having a first-stage regenerator (24) having a first-stage-regenerator inlet (26) a nd a first-stage-regenerator outlet (28), and a second-stage pulse tube expander (32). The second-stage pulse tube expander (32) includes a second-stage regenerator (34) having a second-stage regenerator inlet (36) in gaseous communication with the first-stage regenerator outlet (28), and a second-stage regenerator outlet (40), and a pulse tube (42) having a pulse-tube inlet (44) in gaseous communication with the second-stage regenerator outlet (40), and a pulse-tube outlet (48). The second-stage regenerator (34) and the pulse tube (42) together provide a first gas-flow path (43) between the first-stage regenerator (24) and the pulse-tube outlet (48). A pulse tube pressure drop structure (50) has a pulse-tube-pressure-drop inlet in gaseous communication with the pulse-tube outlet (48), and a pulse-tube pressure-drop outlet, and a gas volume is in gaseous communication with the pulse-tube pressure-drop outlet. A gas flow shunt (60) provides gaseous communication between the first-stage regenerator (24) and the pulse-tube outlet (48). The gas flow shunt (60) provides a second gas-flow path (62) between the first-stage regenerator (24) and the pulse-tube outlet (48).</description><subject>BLASTING</subject><subject>COMBINED HEATING AND REFRIGERATION SYSTEMS</subject><subject>HEAT PUMP SYSTEMS</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>LIQUEFACTION SOLIDIFICATION OF GASES</subject><subject>MANUFACTURE OR STORAGE OF ICE</subject><subject>MECHANICAL ENGINEERING</subject><subject>REFRIGERATION MACHINES, PLANTS OR SYSTEMS</subject><subject>REFRIGERATION OR COOLING</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2009</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMLsksysnMS9cvKM0pTlUoKU1KVcioTCrKTFFILqrMT87Pz0ktUijPLMlQSE8sVkjLyS9XKM4ozSvhYWBNSwRq4YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGuAYamBsaGpiZOhsZEKAEADRUuiA</recordid><startdate>20090930</startdate><enddate>20090930</enddate><creator>PRICE, KENNETH D</creator><creator>CICCARELLI, KEN J</creator><creator>KIRKCONNELL, CARL S</creator><scope>EVB</scope></search><sort><creationdate>20090930</creationdate><title>Stirling/pulse tube hybrid cryocooler with gas flow shunt</title><author>PRICE, KENNETH D ; CICCARELLI, KEN J ; KIRKCONNELL, CARL S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1503154B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2009</creationdate><topic>BLASTING</topic><topic>COMBINED HEATING AND REFRIGERATION SYSTEMS</topic><topic>HEAT PUMP SYSTEMS</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>LIQUEFACTION SOLIDIFICATION OF GASES</topic><topic>MANUFACTURE OR STORAGE OF ICE</topic><topic>MECHANICAL ENGINEERING</topic><topic>REFRIGERATION MACHINES, PLANTS OR SYSTEMS</topic><topic>REFRIGERATION OR COOLING</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>PRICE, KENNETH D</creatorcontrib><creatorcontrib>CICCARELLI, KEN J</creatorcontrib><creatorcontrib>KIRKCONNELL, CARL S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PRICE, KENNETH D</au><au>CICCARELLI, KEN J</au><au>KIRKCONNELL, CARL S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Stirling/pulse tube hybrid cryocooler with gas flow shunt</title><date>2009-09-30</date><risdate>2009</risdate><abstract>A two-stage hybrid cryocooler (20) includes a first-stage Stirling expander (22) having a first-stage regenerator (24) having a first-stage-regenerator inlet (26) a nd a first-stage-regenerator outlet (28), and a second-stage pulse tube expander (32). The second-stage pulse tube expander (32) includes a second-stage regenerator (34) having a second-stage regenerator inlet (36) in gaseous communication with the first-stage regenerator outlet (28), and a second-stage regenerator outlet (40), and a pulse tube (42) having a pulse-tube inlet (44) in gaseous communication with the second-stage regenerator outlet (40), and a pulse-tube outlet (48). The second-stage regenerator (34) and the pulse tube (42) together provide a first gas-flow path (43) between the first-stage regenerator (24) and the pulse-tube outlet (48). A pulse tube pressure drop structure (50) has a pulse-tube-pressure-drop inlet in gaseous communication with the pulse-tube outlet (48), and a pulse-tube pressure-drop outlet, and a gas volume is in gaseous communication with the pulse-tube pressure-drop outlet. A gas flow shunt (60) provides gaseous communication between the first-stage regenerator (24) and the pulse-tube outlet (48). The gas flow shunt (60) provides a second gas-flow path (62) between the first-stage regenerator (24) and the pulse-tube outlet (48).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP1503154B1
source esp@cenet
subjects BLASTING
COMBINED HEATING AND REFRIGERATION SYSTEMS
HEAT PUMP SYSTEMS
HEATING
LIGHTING
LIQUEFACTION SOLIDIFICATION OF GASES
MANUFACTURE OR STORAGE OF ICE
MECHANICAL ENGINEERING
REFRIGERATION MACHINES, PLANTS OR SYSTEMS
REFRIGERATION OR COOLING
WEAPONS
title Stirling/pulse tube hybrid cryocooler with gas flow shunt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T22%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PRICE,%20KENNETH%20D&rft.date=2009-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1503154B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true