TRAINABLE ADAPTIVE FOCUSED REPLICATOR NETWORK FOR ANALYZING DATA

Electronic data is classified using adaptive focused replicator networks (AFRNs). AFRNs are sets of array elements, each array element being trainable in order to replicate a predetermined sub-group of data. Unknown data is inputted into each and every array element in an AFRN array and then replica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: MALYJ, WASYL
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MALYJ, WASYL
description Electronic data is classified using adaptive focused replicator networks (AFRNs). AFRNs are sets of array elements, each array element being trainable in order to replicate a predetermined sub-group of data. Unknown data is inputted into each and every array element in an AFRN array and then replicated by each element array. A comparison is made for each array element to determine the accuracy of each replication. If only one array element successfully replicates the unknown data, then the unknown data is classified in accordance with the corresponding predetermined sub-group of data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1212727A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1212727A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1212727A23</originalsourceid><addsrcrecordid>eNrjZHAICXL09HN08nFVcHRxDAjxDHNVcPN3Dg12dVEIcg3w8XR2DPEPUvBzDQn3D_IGSgUpOPo5-kRGefq5K7g4hjjyMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wBDI0MjcyNzRyNjIpQAAGUpKlM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINABLE ADAPTIVE FOCUSED REPLICATOR NETWORK FOR ANALYZING DATA</title><source>esp@cenet</source><creator>MALYJ, WASYL</creator><creatorcontrib>MALYJ, WASYL</creatorcontrib><description>Electronic data is classified using adaptive focused replicator networks (AFRNs). AFRNs are sets of array elements, each array element being trainable in order to replicate a predetermined sub-group of data. Unknown data is inputted into each and every array element in an AFRN array and then replicated by each element array. A comparison is made for each array element to determine the accuracy of each replication. If only one array element successfully replicates the unknown data, then the unknown data is classified in accordance with the corresponding predetermined sub-group of data.</description><edition>7</edition><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020612&amp;DB=EPODOC&amp;CC=EP&amp;NR=1212727A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020612&amp;DB=EPODOC&amp;CC=EP&amp;NR=1212727A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MALYJ, WASYL</creatorcontrib><title>TRAINABLE ADAPTIVE FOCUSED REPLICATOR NETWORK FOR ANALYZING DATA</title><description>Electronic data is classified using adaptive focused replicator networks (AFRNs). AFRNs are sets of array elements, each array element being trainable in order to replicate a predetermined sub-group of data. Unknown data is inputted into each and every array element in an AFRN array and then replicated by each element array. A comparison is made for each array element to determine the accuracy of each replication. If only one array element successfully replicates the unknown data, then the unknown data is classified in accordance with the corresponding predetermined sub-group of data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAICXL09HN08nFVcHRxDAjxDHNVcPN3Dg12dVEIcg3w8XR2DPEPUvBzDQn3D_IGSgUpOPo5-kRGefq5K7g4hjjyMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wBDI0MjcyNzRyNjIpQAAGUpKlM</recordid><startdate>20020612</startdate><enddate>20020612</enddate><creator>MALYJ, WASYL</creator><scope>EVB</scope></search><sort><creationdate>20020612</creationdate><title>TRAINABLE ADAPTIVE FOCUSED REPLICATOR NETWORK FOR ANALYZING DATA</title><author>MALYJ, WASYL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1212727A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2002</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MALYJ, WASYL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MALYJ, WASYL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINABLE ADAPTIVE FOCUSED REPLICATOR NETWORK FOR ANALYZING DATA</title><date>2002-06-12</date><risdate>2002</risdate><abstract>Electronic data is classified using adaptive focused replicator networks (AFRNs). AFRNs are sets of array elements, each array element being trainable in order to replicate a predetermined sub-group of data. Unknown data is inputted into each and every array element in an AFRN array and then replicated by each element array. A comparison is made for each array element to determine the accuracy of each replication. If only one array element successfully replicates the unknown data, then the unknown data is classified in accordance with the corresponding predetermined sub-group of data.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP1212727A2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title TRAINABLE ADAPTIVE FOCUSED REPLICATOR NETWORK FOR ANALYZING DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MALYJ,%20WASYL&rft.date=2002-06-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1212727A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true