Magnetic resonance imaging

A uniplanar gradient coil assembly (40) generates substantially linear gradient magnetic fields through an examination region (14). The gradient coil assembly (40) includes at least a pair of primary uniplanar gradient coil sets (40a, 40b) and a pair of shield coil sets (41a, 41b) which are disposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: PETROPOULOS, LABROS S
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PETROPOULOS, LABROS S
description A uniplanar gradient coil assembly (40) generates substantially linear gradient magnetic fields through an examination region (14). The gradient coil assembly (40) includes at least a pair of primary uniplanar gradient coil sets (40a, 40b) and a pair of shield coil sets (41a, 41b) which are disposed in an overlapping relationship. One gradient coil set is displaced relative to the other gradient coil set such that the mutual inductance between the two is minimized. Preferably, the coil sets (40a, 40b, 41a, 41b) are symmetric, such that the sweet spot of each coil is coincident with the geometric centre of each coil. One primary uniplanar gradient coil set (40a) is a high efficiency, high switching speed coil to enhance performance of ultrafast magnetic resonance sequences, while the second primary uniplanar gradient coil set (40b) is a low efficiency coil which generates a high quality gradient magnetic field, but with slower switching speeds. By displacing one gradient coil set relative to the other, mutual inductance is minimized, which maximizes peak gradient, rise time, and slew rate, while dB/dt levels are minimized. In one embodiment, the uniplanar gradient coil assembly (40) is housed within an interior of a couch (30).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1102079A3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1102079A3</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1102079A33</originalsourceid><addsrcrecordid>eNrjZJDyTUzPSy3JTFYoSi3Oz0vMS05VyMxNTM_MS-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqUCd8a4BhoYGRgbmlo7GxkQoAQAHQCKX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Magnetic resonance imaging</title><source>esp@cenet</source><creator>PETROPOULOS, LABROS S</creator><creatorcontrib>PETROPOULOS, LABROS S</creatorcontrib><description>A uniplanar gradient coil assembly (40) generates substantially linear gradient magnetic fields through an examination region (14). The gradient coil assembly (40) includes at least a pair of primary uniplanar gradient coil sets (40a, 40b) and a pair of shield coil sets (41a, 41b) which are disposed in an overlapping relationship. One gradient coil set is displaced relative to the other gradient coil set such that the mutual inductance between the two is minimized. Preferably, the coil sets (40a, 40b, 41a, 41b) are symmetric, such that the sweet spot of each coil is coincident with the geometric centre of each coil. One primary uniplanar gradient coil set (40a) is a high efficiency, high switching speed coil to enhance performance of ultrafast magnetic resonance sequences, while the second primary uniplanar gradient coil set (40b) is a low efficiency coil which generates a high quality gradient magnetic field, but with slower switching speeds. By displacing one gradient coil set relative to the other, mutual inductance is minimized, which maximizes peak gradient, rise time, and slew rate, while dB/dt levels are minimized. In one embodiment, the uniplanar gradient coil assembly (40) is housed within an interior of a couch (30).</description><edition>7</edition><language>eng ; fre ; ger</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2003</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20030604&amp;DB=EPODOC&amp;CC=EP&amp;NR=1102079A3$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20030604&amp;DB=EPODOC&amp;CC=EP&amp;NR=1102079A3$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PETROPOULOS, LABROS S</creatorcontrib><title>Magnetic resonance imaging</title><description>A uniplanar gradient coil assembly (40) generates substantially linear gradient magnetic fields through an examination region (14). The gradient coil assembly (40) includes at least a pair of primary uniplanar gradient coil sets (40a, 40b) and a pair of shield coil sets (41a, 41b) which are disposed in an overlapping relationship. One gradient coil set is displaced relative to the other gradient coil set such that the mutual inductance between the two is minimized. Preferably, the coil sets (40a, 40b, 41a, 41b) are symmetric, such that the sweet spot of each coil is coincident with the geometric centre of each coil. One primary uniplanar gradient coil set (40a) is a high efficiency, high switching speed coil to enhance performance of ultrafast magnetic resonance sequences, while the second primary uniplanar gradient coil set (40b) is a low efficiency coil which generates a high quality gradient magnetic field, but with slower switching speeds. By displacing one gradient coil set relative to the other, mutual inductance is minimized, which maximizes peak gradient, rise time, and slew rate, while dB/dt levels are minimized. In one embodiment, the uniplanar gradient coil assembly (40) is housed within an interior of a couch (30).</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2003</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJDyTUzPSy3JTFYoSi3Oz0vMS05VyMxNTM_MS-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqUCd8a4BhoYGRgbmlo7GxkQoAQAHQCKX</recordid><startdate>20030604</startdate><enddate>20030604</enddate><creator>PETROPOULOS, LABROS S</creator><scope>EVB</scope></search><sort><creationdate>20030604</creationdate><title>Magnetic resonance imaging</title><author>PETROPOULOS, LABROS S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1102079A33</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2003</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>PETROPOULOS, LABROS S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PETROPOULOS, LABROS S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Magnetic resonance imaging</title><date>2003-06-04</date><risdate>2003</risdate><abstract>A uniplanar gradient coil assembly (40) generates substantially linear gradient magnetic fields through an examination region (14). The gradient coil assembly (40) includes at least a pair of primary uniplanar gradient coil sets (40a, 40b) and a pair of shield coil sets (41a, 41b) which are disposed in an overlapping relationship. One gradient coil set is displaced relative to the other gradient coil set such that the mutual inductance between the two is minimized. Preferably, the coil sets (40a, 40b, 41a, 41b) are symmetric, such that the sweet spot of each coil is coincident with the geometric centre of each coil. One primary uniplanar gradient coil set (40a) is a high efficiency, high switching speed coil to enhance performance of ultrafast magnetic resonance sequences, while the second primary uniplanar gradient coil set (40b) is a low efficiency coil which generates a high quality gradient magnetic field, but with slower switching speeds. By displacing one gradient coil set relative to the other, mutual inductance is minimized, which maximizes peak gradient, rise time, and slew rate, while dB/dt levels are minimized. In one embodiment, the uniplanar gradient coil assembly (40) is housed within an interior of a couch (30).</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP1102079A3
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PETROPOULOS,%20LABROS%20S&rft.date=2003-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1102079A3%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true