Gas turbine starting method

Gas turbine starting method is improved to start operation with bleed valves being first throttled, then fully opened on the way and then fully closed at 90% speed, thereby fluid unstableness phenomenon is suppressed and starter motor power is reduced. While inlet guide vane (11) and variable stator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ARIMURA, HISATO, SEKI, NAOYUKI
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ARIMURA, HISATO
SEKI, NAOYUKI
description Gas turbine starting method is improved to start operation with bleed valves being first throttled, then fully opened on the way and then fully closed at 90% speed, thereby fluid unstableness phenomenon is suppressed and starter motor power is reduced. While inlet guide vane (11) and variable stator vanes (C1 to C5) are set to predetermined opening from starting to rated speed, bleed valves (1, 2, 3) are set to predetermined opening until 52% speed for the bleed valve (1) and until 51% speed each for the bleed valves (2, 3), then the bleed valves (1, 2, 3) are fully opened until the speed exceeds 90%, when they are fully closed for rated operation. In the prior art, starting operation is done with bleed valves being first fully opened until the speed is elevated to 90% and then fully closed, but in the present invention, air discharged into ambient air in vain can be reduced and thereby starter motor power can be also reduced.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP1041290A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP1041290A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP1041290A23</originalsourceid><addsrcrecordid>eNrjZJB2TyxWKCktSsrMS1UoLkksKsnMS1fITS3JyE_hYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgGGBiaGRpYGjkbGRCgBAC99Iu8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Gas turbine starting method</title><source>esp@cenet</source><creator>ARIMURA, HISATO ; SEKI, NAOYUKI</creator><creatorcontrib>ARIMURA, HISATO ; SEKI, NAOYUKI</creatorcontrib><description>Gas turbine starting method is improved to start operation with bleed valves being first throttled, then fully opened on the way and then fully closed at 90% speed, thereby fluid unstableness phenomenon is suppressed and starter motor power is reduced. While inlet guide vane (11) and variable stator vanes (C1 to C5) are set to predetermined opening from starting to rated speed, bleed valves (1, 2, 3) are set to predetermined opening until 52% speed for the bleed valve (1) and until 51% speed each for the bleed valves (2, 3), then the bleed valves (1, 2, 3) are fully opened until the speed exceeds 90%, when they are fully closed for rated operation. In the prior art, starting operation is done with bleed valves being first fully opened until the speed is elevated to 90% and then fully closed, but in the present invention, air discharged into ambient air in vain can be reduced and thereby starter motor power can be also reduced.</description><edition>7</edition><language>eng ; fre ; ger</language><subject>AIR INTAKES FOR JET-PROPULSION PLANTS ; BLASTING ; COMBUSTION ENGINES ; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS ; GAS-TURBINE PLANTS ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MECHANICAL ENGINEERING ; NON-POSITIVE DISPLACEMENT PUMPS ; POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS ; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS ; WEAPONS</subject><creationdate>2000</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20001004&amp;DB=EPODOC&amp;CC=EP&amp;NR=1041290A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20001004&amp;DB=EPODOC&amp;CC=EP&amp;NR=1041290A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ARIMURA, HISATO</creatorcontrib><creatorcontrib>SEKI, NAOYUKI</creatorcontrib><title>Gas turbine starting method</title><description>Gas turbine starting method is improved to start operation with bleed valves being first throttled, then fully opened on the way and then fully closed at 90% speed, thereby fluid unstableness phenomenon is suppressed and starter motor power is reduced. While inlet guide vane (11) and variable stator vanes (C1 to C5) are set to predetermined opening from starting to rated speed, bleed valves (1, 2, 3) are set to predetermined opening until 52% speed for the bleed valve (1) and until 51% speed each for the bleed valves (2, 3), then the bleed valves (1, 2, 3) are fully opened until the speed exceeds 90%, when they are fully closed for rated operation. In the prior art, starting operation is done with bleed valves being first fully opened until the speed is elevated to 90% and then fully closed, but in the present invention, air discharged into ambient air in vain can be reduced and thereby starter motor power can be also reduced.</description><subject>AIR INTAKES FOR JET-PROPULSION PLANTS</subject><subject>BLASTING</subject><subject>COMBUSTION ENGINES</subject><subject>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</subject><subject>GAS-TURBINE PLANTS</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>NON-POSITIVE DISPLACEMENT PUMPS</subject><subject>POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS</subject><subject>PUMPS FOR LIQUIDS OR ELASTIC FLUIDS</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2000</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB2TyxWKCktSsrMS1UoLkksKsnMS1fITS3JyE_hYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgGGBiaGRpYGjkbGRCgBAC99Iu8</recordid><startdate>20001004</startdate><enddate>20001004</enddate><creator>ARIMURA, HISATO</creator><creator>SEKI, NAOYUKI</creator><scope>EVB</scope></search><sort><creationdate>20001004</creationdate><title>Gas turbine starting method</title><author>ARIMURA, HISATO ; SEKI, NAOYUKI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP1041290A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2000</creationdate><topic>AIR INTAKES FOR JET-PROPULSION PLANTS</topic><topic>BLASTING</topic><topic>COMBUSTION ENGINES</topic><topic>CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS</topic><topic>GAS-TURBINE PLANTS</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>NON-POSITIVE DISPLACEMENT PUMPS</topic><topic>POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS</topic><topic>PUMPS FOR LIQUIDS OR ELASTIC FLUIDS</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>ARIMURA, HISATO</creatorcontrib><creatorcontrib>SEKI, NAOYUKI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ARIMURA, HISATO</au><au>SEKI, NAOYUKI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Gas turbine starting method</title><date>2000-10-04</date><risdate>2000</risdate><abstract>Gas turbine starting method is improved to start operation with bleed valves being first throttled, then fully opened on the way and then fully closed at 90% speed, thereby fluid unstableness phenomenon is suppressed and starter motor power is reduced. While inlet guide vane (11) and variable stator vanes (C1 to C5) are set to predetermined opening from starting to rated speed, bleed valves (1, 2, 3) are set to predetermined opening until 52% speed for the bleed valve (1) and until 51% speed each for the bleed valves (2, 3), then the bleed valves (1, 2, 3) are fully opened until the speed exceeds 90%, when they are fully closed for rated operation. In the prior art, starting operation is done with bleed valves being first fully opened until the speed is elevated to 90% and then fully closed, but in the present invention, air discharged into ambient air in vain can be reduced and thereby starter motor power can be also reduced.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP1041290A2
source esp@cenet
subjects AIR INTAKES FOR JET-PROPULSION PLANTS
BLASTING
COMBUSTION ENGINES
CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
GAS-TURBINE PLANTS
HEATING
HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
LIGHTING
MECHANICAL ENGINEERING
NON-POSITIVE DISPLACEMENT PUMPS
POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS
PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
WEAPONS
title Gas turbine starting method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ARIMURA,%20HISATO&rft.date=2000-10-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP1041290A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true