ION BEAM PROCESS FOR DEPOSITION OF HIGHLY ABRASION-RESISTANT COATINGS
An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KNAPP, BRADLEY J PETRMICHL, RUDOLPH HUGO GALVIN, NORMAN DONALD KIMOCK, FRED M |
description | An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface. Alter After the substrate surface has been sputter-etched, a protective, abrasion-resistant coating is deposited by ion beam deposition. The ion beam-deposited coating may contain one or more layers. Once the chosen thickness of the coating has been achieved, the deposition process on the substrates is terminated, the vacuum chamber pressure is increased to atmospheric pressure, and the coated substrate products having improved abrasion-resistance are removed from the vacuum chamber. The coated products of this invention have utility as plastic sunglass lenses, ophthalmic lenses, bar codes scanner windows, and industrial wear parts that must be protected from scratches and abrasion. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP0748260B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP0748260B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP0748260B23</originalsourceid><addsrcrecordid>eNrjZHD19PdTcHJ19FUICPJ3dg0OVnDzD1JwcQ3wD_YMAcn5uyl4eLp7-EQqODoFOQYDhXSDXIM9g0Mc_UIUnP0dQzz93IN5GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CBuYmFkZmBk5ExEUoALNIruA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ION BEAM PROCESS FOR DEPOSITION OF HIGHLY ABRASION-RESISTANT COATINGS</title><source>esp@cenet</source><creator>KNAPP, BRADLEY J ; PETRMICHL, RUDOLPH HUGO ; GALVIN, NORMAN DONALD ; KIMOCK, FRED M</creator><creatorcontrib>KNAPP, BRADLEY J ; PETRMICHL, RUDOLPH HUGO ; GALVIN, NORMAN DONALD ; KIMOCK, FRED M</creatorcontrib><description>An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface. <DEL-S DATE="20010724" ID="DEL-S-00001">Alter<DEL-E ID="DEL-S-00001"> <INS-S DATE="20010724" ID="INS-S-00001">After <INS-E ID="INS-S-00001">the substrate surface has been sputter-etched, a protective, abrasion-resistant coating is deposited by ion beam deposition. The ion beam-deposited coating may contain one or more layers. Once the chosen thickness of the coating has been achieved, the deposition process on the substrates is terminated, the vacuum chamber pressure is increased to atmospheric pressure, and the coated substrate products having improved abrasion-resistance are removed from the vacuum chamber. The coated products of this invention have utility as plastic sunglass lenses, ophthalmic lenses, bar codes scanner windows, and industrial wear parts that must be protected from scratches and abrasion.</description><language>eng ; fre ; ger</language><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; LAYERED PRODUCTS ; LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM ; METALLURGY ; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 ; NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE ; PERFORMING OPERATIONS ; PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL ; SPRAYING OR ATOMISING IN GENERAL ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2009</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20091028&DB=EPODOC&CC=EP&NR=0748260B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20091028&DB=EPODOC&CC=EP&NR=0748260B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KNAPP, BRADLEY J</creatorcontrib><creatorcontrib>PETRMICHL, RUDOLPH HUGO</creatorcontrib><creatorcontrib>GALVIN, NORMAN DONALD</creatorcontrib><creatorcontrib>KIMOCK, FRED M</creatorcontrib><title>ION BEAM PROCESS FOR DEPOSITION OF HIGHLY ABRASION-RESISTANT COATINGS</title><description>An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface. <DEL-S DATE="20010724" ID="DEL-S-00001">Alter<DEL-E ID="DEL-S-00001"> <INS-S DATE="20010724" ID="INS-S-00001">After <INS-E ID="INS-S-00001">the substrate surface has been sputter-etched, a protective, abrasion-resistant coating is deposited by ion beam deposition. The ion beam-deposited coating may contain one or more layers. Once the chosen thickness of the coating has been achieved, the deposition process on the substrates is terminated, the vacuum chamber pressure is increased to atmospheric pressure, and the coated substrate products having improved abrasion-resistance are removed from the vacuum chamber. The coated products of this invention have utility as plastic sunglass lenses, ophthalmic lenses, bar codes scanner windows, and industrial wear parts that must be protected from scratches and abrasion.</description><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>LAYERED PRODUCTS</subject><subject>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</subject><subject>METALLURGY</subject><subject>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</subject><subject>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</subject><subject>PERFORMING OPERATIONS</subject><subject>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</subject><subject>SPRAYING OR ATOMISING IN GENERAL</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2009</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD19PdTcHJ19FUICPJ3dg0OVnDzD1JwcQ3wD_YMAcn5uyl4eLp7-EQqODoFOQYDhXSDXIM9g0Mc_UIUnP0dQzz93IN5GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakm8a4CBuYmFkZmBk5ExEUoALNIruA</recordid><startdate>20091028</startdate><enddate>20091028</enddate><creator>KNAPP, BRADLEY J</creator><creator>PETRMICHL, RUDOLPH HUGO</creator><creator>GALVIN, NORMAN DONALD</creator><creator>KIMOCK, FRED M</creator><scope>EVB</scope></search><sort><creationdate>20091028</creationdate><title>ION BEAM PROCESS FOR DEPOSITION OF HIGHLY ABRASION-RESISTANT COATINGS</title><author>KNAPP, BRADLEY J ; PETRMICHL, RUDOLPH HUGO ; GALVIN, NORMAN DONALD ; KIMOCK, FRED M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP0748260B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2009</creationdate><topic>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>LAYERED PRODUCTS</topic><topic>LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM</topic><topic>METALLURGY</topic><topic>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</topic><topic>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</topic><topic>PERFORMING OPERATIONS</topic><topic>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</topic><topic>SPRAYING OR ATOMISING IN GENERAL</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>KNAPP, BRADLEY J</creatorcontrib><creatorcontrib>PETRMICHL, RUDOLPH HUGO</creatorcontrib><creatorcontrib>GALVIN, NORMAN DONALD</creatorcontrib><creatorcontrib>KIMOCK, FRED M</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KNAPP, BRADLEY J</au><au>PETRMICHL, RUDOLPH HUGO</au><au>GALVIN, NORMAN DONALD</au><au>KIMOCK, FRED M</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ION BEAM PROCESS FOR DEPOSITION OF HIGHLY ABRASION-RESISTANT COATINGS</title><date>2009-10-28</date><risdate>2009</risdate><abstract>An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface. <DEL-S DATE="20010724" ID="DEL-S-00001">Alter<DEL-E ID="DEL-S-00001"> <INS-S DATE="20010724" ID="INS-S-00001">After <INS-E ID="INS-S-00001">the substrate surface has been sputter-etched, a protective, abrasion-resistant coating is deposited by ion beam deposition. The ion beam-deposited coating may contain one or more layers. Once the chosen thickness of the coating has been achieved, the deposition process on the substrates is terminated, the vacuum chamber pressure is increased to atmospheric pressure, and the coated substrate products having improved abrasion-resistance are removed from the vacuum chamber. The coated products of this invention have utility as plastic sunglass lenses, ophthalmic lenses, bar codes scanner windows, and industrial wear parts that must be protected from scratches and abrasion.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP0748260B2 |
source | esp@cenet |
subjects | APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL LAYERED PRODUCTS LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT ORNON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM METALLURGY MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE PERFORMING OPERATIONS PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL SPRAYING OR ATOMISING IN GENERAL SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING |
title | ION BEAM PROCESS FOR DEPOSITION OF HIGHLY ABRASION-RESISTANT COATINGS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KNAPP,%20BRADLEY%20J&rft.date=2009-10-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP0748260B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |