Methods for coating adherent diamond films on cemented tungsten carbide substrates
A cemented tungsten carbide substrate is prepared for coating with a layer of diamond film by subjecting the substrate surface to be coated to a process which first removes a small amount of the tungsten carbide at the surface of the substrate while leaving the cobalt binder substantially intact. Mu...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CUMMINGS, ROBERT H PETERS, MICHAEL G |
description | A cemented tungsten carbide substrate is prepared for coating with a layer of diamond film by subjecting the substrate surface to be coated to a process which first removes a small amount of the tungsten carbide at the surface of the substrate while leaving the cobalt binder substantially intact. Murakami's reagent is presently preferred. The substrate is then subjected to a process which removes any residue remaining on the surface as a result of the performance of the process which removes the tungsten carbide. A solution of sulfuric acid and hydrogen peroxide is presently preferred.A diamond coated cemented tungsten carbide tool is formed using an unpolished substrate, which may be prepared by etching as described above or by etching in nitric acid prior to diamond film deposition. Deposition of a substantially continuous diamond film may be accomplished by reactive vapor deposition, thermally assisted (hot filament) CVD, plasma-enhanced CVD, or other techniques. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP0519587B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP0519587B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP0519587B13</originalsourceid><addsrcrecordid>eNqNykEKwjAQRuFsXIh6h7mAYJGibpWKG0HEfZkmf9pAk5TM9P524QFcPfh4a_N-QofshHwuZDNrSD2xG1CQlFzgmJMjH8YolBNZxMXhSOfUi2IRLl1wIJk70cIK2ZqV51Gw-3Vj6N58bo89ptxCJrZI0LZ5HerqUp9P1-r4x_IFzrQ4Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods for coating adherent diamond films on cemented tungsten carbide substrates</title><source>esp@cenet</source><creator>CUMMINGS, ROBERT H ; PETERS, MICHAEL G</creator><creatorcontrib>CUMMINGS, ROBERT H ; PETERS, MICHAEL G</creatorcontrib><description>A cemented tungsten carbide substrate is prepared for coating with a layer of diamond film by subjecting the substrate surface to be coated to a process which first removes a small amount of the tungsten carbide at the surface of the substrate while leaving the cobalt binder substantially intact. Murakami's reagent is presently preferred. The substrate is then subjected to a process which removes any residue remaining on the surface as a result of the performance of the process which removes the tungsten carbide. A solution of sulfuric acid and hydrogen peroxide is presently preferred.A diamond coated cemented tungsten carbide tool is formed using an unpolished substrate, which may be prepared by etching as described above or by etching in nitric acid prior to diamond film deposition. Deposition of a substantially continuous diamond film may be accomplished by reactive vapor deposition, thermally assisted (hot filament) CVD, plasma-enhanced CVD, or other techniques.</description><edition>6</edition><language>eng ; fre ; ger</language><subject>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE ; APPARATUS THEREFOR ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; COMPOUNDS THEREOF ; CRYSTAL GROWTH ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; INORGANIC CHEMISTRY ; METALLURGY ; NON-METALLIC ELEMENTS ; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE ; REFINING BY ZONE-MELTING OF MATERIAL ; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE ; SINGLE-CRYSTAL-GROWTH ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</subject><creationdate>1996</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19960821&DB=EPODOC&CC=EP&NR=0519587B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19960821&DB=EPODOC&CC=EP&NR=0519587B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CUMMINGS, ROBERT H</creatorcontrib><creatorcontrib>PETERS, MICHAEL G</creatorcontrib><title>Methods for coating adherent diamond films on cemented tungsten carbide substrates</title><description>A cemented tungsten carbide substrate is prepared for coating with a layer of diamond film by subjecting the substrate surface to be coated to a process which first removes a small amount of the tungsten carbide at the surface of the substrate while leaving the cobalt binder substantially intact. Murakami's reagent is presently preferred. The substrate is then subjected to a process which removes any residue remaining on the surface as a result of the performance of the process which removes the tungsten carbide. A solution of sulfuric acid and hydrogen peroxide is presently preferred.A diamond coated cemented tungsten carbide tool is formed using an unpolished substrate, which may be prepared by etching as described above or by etching in nitric acid prior to diamond film deposition. Deposition of a substantially continuous diamond film may be accomplished by reactive vapor deposition, thermally assisted (hot filament) CVD, plasma-enhanced CVD, or other techniques.</description><subject>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE</subject><subject>APPARATUS THEREFOR</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>COMPOUNDS THEREOF</subject><subject>CRYSTAL GROWTH</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>INORGANIC CHEMISTRY</subject><subject>METALLURGY</subject><subject>NON-METALLIC ELEMENTS</subject><subject>PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</subject><subject>REFINING BY ZONE-MELTING OF MATERIAL</subject><subject>SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</subject><subject>SINGLE-CRYSTAL-GROWTH</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1996</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQRuFsXIh6h7mAYJGibpWKG0HEfZkmf9pAk5TM9P524QFcPfh4a_N-QofshHwuZDNrSD2xG1CQlFzgmJMjH8YolBNZxMXhSOfUi2IRLl1wIJk70cIK2ZqV51Gw-3Vj6N58bo89ptxCJrZI0LZ5HerqUp9P1-r4x_IFzrQ4Hw</recordid><startdate>19960821</startdate><enddate>19960821</enddate><creator>CUMMINGS, ROBERT H</creator><creator>PETERS, MICHAEL G</creator><scope>EVB</scope></search><sort><creationdate>19960821</creationdate><title>Methods for coating adherent diamond films on cemented tungsten carbide substrates</title><author>CUMMINGS, ROBERT H ; PETERS, MICHAEL G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP0519587B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>1996</creationdate><topic>AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE</topic><topic>APPARATUS THEREFOR</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>COMPOUNDS THEREOF</topic><topic>CRYSTAL GROWTH</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>INORGANIC CHEMISTRY</topic><topic>METALLURGY</topic><topic>NON-METALLIC ELEMENTS</topic><topic>PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</topic><topic>REFINING BY ZONE-MELTING OF MATERIAL</topic><topic>SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE</topic><topic>SINGLE-CRYSTAL-GROWTH</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL</topic><toplevel>online_resources</toplevel><creatorcontrib>CUMMINGS, ROBERT H</creatorcontrib><creatorcontrib>PETERS, MICHAEL G</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CUMMINGS, ROBERT H</au><au>PETERS, MICHAEL G</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods for coating adherent diamond films on cemented tungsten carbide substrates</title><date>1996-08-21</date><risdate>1996</risdate><abstract>A cemented tungsten carbide substrate is prepared for coating with a layer of diamond film by subjecting the substrate surface to be coated to a process which first removes a small amount of the tungsten carbide at the surface of the substrate while leaving the cobalt binder substantially intact. Murakami's reagent is presently preferred. The substrate is then subjected to a process which removes any residue remaining on the surface as a result of the performance of the process which removes the tungsten carbide. A solution of sulfuric acid and hydrogen peroxide is presently preferred.A diamond coated cemented tungsten carbide tool is formed using an unpolished substrate, which may be prepared by etching as described above or by etching in nitric acid prior to diamond film deposition. Deposition of a substantially continuous diamond film may be accomplished by reactive vapor deposition, thermally assisted (hot filament) CVD, plasma-enhanced CVD, or other techniques.</abstract><edition>6</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP0519587B1 |
source | esp@cenet |
subjects | AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUSPOLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE APPARATUS THEREFOR CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL COMPOUNDS THEREOF CRYSTAL GROWTH DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL INORGANIC CHEMISTRY METALLURGY NON-METALLIC ELEMENTS PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE REFINING BY ZONE-MELTING OF MATERIAL SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITHDEFINED STRUCTURE SINGLE-CRYSTAL-GROWTH SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL ORUNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL |
title | Methods for coating adherent diamond films on cemented tungsten carbide substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CUMMINGS,%20ROBERT%20H&rft.date=1996-08-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP0519587B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |