Polarization independent optical isolator
A polarization independent optical isolator is disclosed which uses a single birefringent plate. A pair of stacked reciprocal rotators, a Faraday rotator, and reflector are positioned in tandem adjacent to the birefringent plate. In the forward (transmitting) direction, a lightwave signal exiting an...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | JAMESON, RALPH STEPHEN |
description | A polarization independent optical isolator is disclosed which uses a single birefringent plate. A pair of stacked reciprocal rotators, a Faraday rotator, and reflector are positioned in tandem adjacent to the birefringent plate. In the forward (transmitting) direction, a lightwave signal exiting an optical fiber is split into a pair of orthogonal rays by the birefringent plate. The orthogonal rays then pass through a first reciprocal rotator and the Faraday rotator. The rotated rays are then redirected by the reflector back through the Faraday rotator. After passing through the second reciprocal rotator, the orthogonal rays re-enter the same birefringent plate where they are recombined and launched in an output fiber. Since a Faraday rotator is a non-reciprocal device, any signal traveling through the isolator in the reverse (isolation) direction will be split on both passes through the birefringent plate such that neither will intercept the input fiber. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP0421654A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP0421654A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP0421654A13</originalsourceid><addsrcrecordid>eNrjZNAMyM9JLMqsSizJzM9TyMxLSS1IBRJ5JQr5BSWZyYk5CpnFQBUl-UU8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSTeNcDAxMjQzNTE0dCYCCUA-fwo5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Polarization independent optical isolator</title><source>esp@cenet</source><creator>JAMESON, RALPH STEPHEN</creator><creatorcontrib>JAMESON, RALPH STEPHEN</creatorcontrib><description>A polarization independent optical isolator is disclosed which uses a single birefringent plate. A pair of stacked reciprocal rotators, a Faraday rotator, and reflector are positioned in tandem adjacent to the birefringent plate. In the forward (transmitting) direction, a lightwave signal exiting an optical fiber is split into a pair of orthogonal rays by the birefringent plate. The orthogonal rays then pass through a first reciprocal rotator and the Faraday rotator. The rotated rays are then redirected by the reflector back through the Faraday rotator. After passing through the second reciprocal rotator, the orthogonal rays re-enter the same birefringent plate where they are recombined and launched in an output fiber. Since a Faraday rotator is a non-reciprocal device, any signal traveling through the isolator in the reverse (isolation) direction will be split on both passes through the birefringent plate such that neither will intercept the input fiber.</description><language>eng ; fre ; ger</language><subject>DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH ISMODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THEDEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY,COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g.SWITCHING, GATING, MODULATING OR DEMODULATING ; FREQUENCY-CHANGING ; NON-LINEAR OPTICS ; OPTICAL ANALOGUE/DIGITAL CONVERTERS ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICAL LOGIC ELEMENTS ; OPTICS ; PHYSICS ; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF</subject><creationdate>1991</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19910410&DB=EPODOC&CC=EP&NR=0421654A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19910410&DB=EPODOC&CC=EP&NR=0421654A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JAMESON, RALPH STEPHEN</creatorcontrib><title>Polarization independent optical isolator</title><description>A polarization independent optical isolator is disclosed which uses a single birefringent plate. A pair of stacked reciprocal rotators, a Faraday rotator, and reflector are positioned in tandem adjacent to the birefringent plate. In the forward (transmitting) direction, a lightwave signal exiting an optical fiber is split into a pair of orthogonal rays by the birefringent plate. The orthogonal rays then pass through a first reciprocal rotator and the Faraday rotator. The rotated rays are then redirected by the reflector back through the Faraday rotator. After passing through the second reciprocal rotator, the orthogonal rays re-enter the same birefringent plate where they are recombined and launched in an output fiber. Since a Faraday rotator is a non-reciprocal device, any signal traveling through the isolator in the reverse (isolation) direction will be split on both passes through the birefringent plate such that neither will intercept the input fiber.</description><subject>DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH ISMODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THEDEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY,COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g.SWITCHING, GATING, MODULATING OR DEMODULATING</subject><subject>FREQUENCY-CHANGING</subject><subject>NON-LINEAR OPTICS</subject><subject>OPTICAL ANALOGUE/DIGITAL CONVERTERS</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICAL LOGIC ELEMENTS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><subject>TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1991</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAMyM9JLMqsSizJzM9TyMxLSS1IBRJ5JQr5BSWZyYk5CpnFQBUl-UU8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSTeNcDAxMjQzNTE0dCYCCUA-fwo5w</recordid><startdate>19910410</startdate><enddate>19910410</enddate><creator>JAMESON, RALPH STEPHEN</creator><scope>EVB</scope></search><sort><creationdate>19910410</creationdate><title>Polarization independent optical isolator</title><author>JAMESON, RALPH STEPHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP0421654A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>1991</creationdate><topic>DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH ISMODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THEDEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY,COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g.SWITCHING, GATING, MODULATING OR DEMODULATING</topic><topic>FREQUENCY-CHANGING</topic><topic>NON-LINEAR OPTICS</topic><topic>OPTICAL ANALOGUE/DIGITAL CONVERTERS</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICAL LOGIC ELEMENTS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><topic>TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF</topic><toplevel>online_resources</toplevel><creatorcontrib>JAMESON, RALPH STEPHEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JAMESON, RALPH STEPHEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Polarization independent optical isolator</title><date>1991-04-10</date><risdate>1991</risdate><abstract>A polarization independent optical isolator is disclosed which uses a single birefringent plate. A pair of stacked reciprocal rotators, a Faraday rotator, and reflector are positioned in tandem adjacent to the birefringent plate. In the forward (transmitting) direction, a lightwave signal exiting an optical fiber is split into a pair of orthogonal rays by the birefringent plate. The orthogonal rays then pass through a first reciprocal rotator and the Faraday rotator. The rotated rays are then redirected by the reflector back through the Faraday rotator. After passing through the second reciprocal rotator, the orthogonal rays re-enter the same birefringent plate where they are recombined and launched in an output fiber. Since a Faraday rotator is a non-reciprocal device, any signal traveling through the isolator in the reverse (isolation) direction will be split on both passes through the birefringent plate such that neither will intercept the input fiber.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP0421654A1 |
source | esp@cenet |
subjects | DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH ISMODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THEDEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY,COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g.SWITCHING, GATING, MODULATING OR DEMODULATING FREQUENCY-CHANGING NON-LINEAR OPTICS OPTICAL ANALOGUE/DIGITAL CONVERTERS OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICAL LOGIC ELEMENTS OPTICS PHYSICS TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF |
title | Polarization independent optical isolator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JAMESON,%20RALPH%20STEPHEN&rft.date=1991-04-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP0421654A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |