DE3153270

The production of improved photovoltaic solar cells and the like comprising both p and n type deposited silicon film regions is made possible by a process which provides more efficient p-doped silicon films with higher acceptor concentrations. The process utilizes previously known p-dopant metal or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: IZU, MASATSUGU, BIRMINGHAM, MICH., US, CANNELLA, VINCENT D., DETROIT, MICH., US, OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator IZU, MASATSUGU, BIRMINGHAM, MICH., US
CANNELLA, VINCENT D., DETROIT, MICH., US
OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US
description The production of improved photovoltaic solar cells and the like comprising both p and n type deposited silicon film regions is made possible by a process which provides more efficient p-doped silicon films with higher acceptor concentrations. The process utilizes previously known p-dopant metal or boron gaseous materials in unique forms and conditions in a glow discharge silicon preferably hydrogen and fluorine compensated deposition process. Thus, p-dopant metals like aluminum may be used in an elemental evaporated form, rather than in a gaseous compound form heretofore ineffectively used and deposited with the glow discharge deposited silicon on substrates kept at lower temperatures where fluorine and hydrogen compensation is most effective. Preferably boron in a gaseous compound form like diborane and other p-dopant metals in a gaseous form are used uniquely during the glow discharge deposition of silicon by heating the substrate to heretofore believed undesirably higher temperatures, like at least about 450 DEG C. to 800 DEG C. where at least fluorine compensation, if desired, is still effective. The improved devices, such as solar cells, can be manufactured in a continuous process on a web type substrate moved through a plurality of film deposition chambers. Each of the chambers is dedicated to depositing a particular type of film layer (p, i or n) and is isolated from the other chambers.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_DE3153270C2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>DE3153270C2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_DE3153270C23</originalsourceid><addsrcrecordid>eNrjZOB0cTU2NDU2MjfgYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxcPXORsZEKAEAyWYaXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DE3153270</title><source>esp@cenet</source><creator>IZU, MASATSUGU, BIRMINGHAM, MICH., US ; CANNELLA, VINCENT D., DETROIT, MICH., US ; OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</creator><creatorcontrib>IZU, MASATSUGU, BIRMINGHAM, MICH., US ; CANNELLA, VINCENT D., DETROIT, MICH., US ; OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</creatorcontrib><description>The production of improved photovoltaic solar cells and the like comprising both p and n type deposited silicon film regions is made possible by a process which provides more efficient p-doped silicon films with higher acceptor concentrations. The process utilizes previously known p-dopant metal or boron gaseous materials in unique forms and conditions in a glow discharge silicon preferably hydrogen and fluorine compensated deposition process. Thus, p-dopant metals like aluminum may be used in an elemental evaporated form, rather than in a gaseous compound form heretofore ineffectively used and deposited with the glow discharge deposited silicon on substrates kept at lower temperatures where fluorine and hydrogen compensation is most effective. Preferably boron in a gaseous compound form like diborane and other p-dopant metals in a gaseous form are used uniquely during the glow discharge deposition of silicon by heating the substrate to heretofore believed undesirably higher temperatures, like at least about 450 DEG C. to 800 DEG C. where at least fluorine compensation, if desired, is still effective. The improved devices, such as solar cells, can be manufactured in a continuous process on a web type substrate moved through a plurality of film deposition chambers. Each of the chambers is dedicated to depositing a particular type of film layer (p, i or n) and is isolated from the other chambers.</description><edition>4</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>1986</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19860327&amp;DB=EPODOC&amp;CC=DE&amp;NR=3153270C2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19860327&amp;DB=EPODOC&amp;CC=DE&amp;NR=3153270C2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>IZU, MASATSUGU, BIRMINGHAM, MICH., US</creatorcontrib><creatorcontrib>CANNELLA, VINCENT D., DETROIT, MICH., US</creatorcontrib><creatorcontrib>OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</creatorcontrib><title>DE3153270</title><description>The production of improved photovoltaic solar cells and the like comprising both p and n type deposited silicon film regions is made possible by a process which provides more efficient p-doped silicon films with higher acceptor concentrations. The process utilizes previously known p-dopant metal or boron gaseous materials in unique forms and conditions in a glow discharge silicon preferably hydrogen and fluorine compensated deposition process. Thus, p-dopant metals like aluminum may be used in an elemental evaporated form, rather than in a gaseous compound form heretofore ineffectively used and deposited with the glow discharge deposited silicon on substrates kept at lower temperatures where fluorine and hydrogen compensation is most effective. Preferably boron in a gaseous compound form like diborane and other p-dopant metals in a gaseous form are used uniquely during the glow discharge deposition of silicon by heating the substrate to heretofore believed undesirably higher temperatures, like at least about 450 DEG C. to 800 DEG C. where at least fluorine compensation, if desired, is still effective. The improved devices, such as solar cells, can be manufactured in a continuous process on a web type substrate moved through a plurality of film deposition chambers. Each of the chambers is dedicated to depositing a particular type of film layer (p, i or n) and is isolated from the other chambers.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1986</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZOB0cTU2NDU2MjfgYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxcPXORsZEKAEAyWYaXg</recordid><startdate>19860327</startdate><enddate>19860327</enddate><creator>IZU, MASATSUGU, BIRMINGHAM, MICH., US</creator><creator>CANNELLA, VINCENT D., DETROIT, MICH., US</creator><creator>OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</creator><scope>EVB</scope></search><sort><creationdate>19860327</creationdate><title>DE3153270</title><author>IZU, MASATSUGU, BIRMINGHAM, MICH., US ; CANNELLA, VINCENT D., DETROIT, MICH., US ; OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_DE3153270C23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1986</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>IZU, MASATSUGU, BIRMINGHAM, MICH., US</creatorcontrib><creatorcontrib>CANNELLA, VINCENT D., DETROIT, MICH., US</creatorcontrib><creatorcontrib>OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>IZU, MASATSUGU, BIRMINGHAM, MICH., US</au><au>CANNELLA, VINCENT D., DETROIT, MICH., US</au><au>OVSHINSKY, STANFORD R., BLOOMFIELD HILLS, MICH., US</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DE3153270</title><date>1986-03-27</date><risdate>1986</risdate><abstract>The production of improved photovoltaic solar cells and the like comprising both p and n type deposited silicon film regions is made possible by a process which provides more efficient p-doped silicon films with higher acceptor concentrations. The process utilizes previously known p-dopant metal or boron gaseous materials in unique forms and conditions in a glow discharge silicon preferably hydrogen and fluorine compensated deposition process. Thus, p-dopant metals like aluminum may be used in an elemental evaporated form, rather than in a gaseous compound form heretofore ineffectively used and deposited with the glow discharge deposited silicon on substrates kept at lower temperatures where fluorine and hydrogen compensation is most effective. Preferably boron in a gaseous compound form like diborane and other p-dopant metals in a gaseous form are used uniquely during the glow discharge deposition of silicon by heating the substrate to heretofore believed undesirably higher temperatures, like at least about 450 DEG C. to 800 DEG C. where at least fluorine compensation, if desired, is still effective. The improved devices, such as solar cells, can be manufactured in a continuous process on a web type substrate moved through a plurality of film deposition chambers. Each of the chambers is dedicated to depositing a particular type of film layer (p, i or n) and is isolated from the other chambers.</abstract><edition>4</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_DE3153270C2
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title DE3153270
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T14%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=IZU,%20MASATSUGU,%20BIRMINGHAM,%20MICH.,%20US&rft.date=1986-03-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EDE3153270C2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true