Mass airborne LiDAR point cloud rapid registration algorithm fusing color features
The invention discloses a mass airborne LiDAR point cloud rapid registration algorithm fused with color features, in the registration process, a point cloud rasterization strategy is used, color information of point clouds is fused into corresponding feature point extraction, a SuperPoint and SuperG...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI PENGCHENG LYU LIANG TENG FEI ZHOU YANG HU XIAOFEI SHI QUNSHAN LIANG JING ZHANG HENG SHI SHIHAO LAN CHAOZHEN |
description | The invention discloses a mass airborne LiDAR point cloud rapid registration algorithm fused with color features, in the registration process, a point cloud rasterization strategy is used, color information of point clouds is fused into corresponding feature point extraction, a SuperPoint and SuperGlue combination mode is selected, feature point extraction and matching of large-difference point cloud data are realized, and the registration accuracy is improved. A singular value decomposition method is designed to be combined with a random sampling consensus algorithm, rotation translation matrix calculation is completed, and a comprehensive evaluation index system is established. The method can be effectively used for high-precision registration of outdoor large-area massive airborne LiDAR point cloud data, in addition, the algorithm has good tolerance to the number of point clouds, by combining downsampling, even if the number of point clouds reaches more than ten million levels, the registration time can st |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN119006545A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN119006545A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN119006545A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzkAUisoEmNVQAzAULFXJnWLpRBHdnJ_GDgAy3_LnxfdDc0AWZ-igeDKx6aDKBwSOC95AMXI39LElhQTSwD0kyin1xvGbBwmcOJFYSRMWcmWxWxEb7T6uSjW59OjvWwoSk8W0VGg1Lf3qjqU5b7e1c32n-cDCsg4Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mass airborne LiDAR point cloud rapid registration algorithm fusing color features</title><source>esp@cenet</source><creator>LI PENGCHENG ; LYU LIANG ; TENG FEI ; ZHOU YANG ; HU XIAOFEI ; SHI QUNSHAN ; LIANG JING ; ZHANG HENG ; SHI SHIHAO ; LAN CHAOZHEN</creator><creatorcontrib>LI PENGCHENG ; LYU LIANG ; TENG FEI ; ZHOU YANG ; HU XIAOFEI ; SHI QUNSHAN ; LIANG JING ; ZHANG HENG ; SHI SHIHAO ; LAN CHAOZHEN</creatorcontrib><description>The invention discloses a mass airborne LiDAR point cloud rapid registration algorithm fused with color features, in the registration process, a point cloud rasterization strategy is used, color information of point clouds is fused into corresponding feature point extraction, a SuperPoint and SuperGlue combination mode is selected, feature point extraction and matching of large-difference point cloud data are realized, and the registration accuracy is improved. A singular value decomposition method is designed to be combined with a random sampling consensus algorithm, rotation translation matrix calculation is completed, and a comprehensive evaluation index system is established. The method can be effectively used for high-precision registration of outdoor large-area massive airborne LiDAR point cloud data, in addition, the algorithm has good tolerance to the number of point clouds, by combining downsampling, even if the number of point clouds reaches more than ten million levels, the registration time can st</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241122&DB=EPODOC&CC=CN&NR=119006545A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241122&DB=EPODOC&CC=CN&NR=119006545A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PENGCHENG</creatorcontrib><creatorcontrib>LYU LIANG</creatorcontrib><creatorcontrib>TENG FEI</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>HU XIAOFEI</creatorcontrib><creatorcontrib>SHI QUNSHAN</creatorcontrib><creatorcontrib>LIANG JING</creatorcontrib><creatorcontrib>ZHANG HENG</creatorcontrib><creatorcontrib>SHI SHIHAO</creatorcontrib><creatorcontrib>LAN CHAOZHEN</creatorcontrib><title>Mass airborne LiDAR point cloud rapid registration algorithm fusing color features</title><description>The invention discloses a mass airborne LiDAR point cloud rapid registration algorithm fused with color features, in the registration process, a point cloud rasterization strategy is used, color information of point clouds is fused into corresponding feature point extraction, a SuperPoint and SuperGlue combination mode is selected, feature point extraction and matching of large-difference point cloud data are realized, and the registration accuracy is improved. A singular value decomposition method is designed to be combined with a random sampling consensus algorithm, rotation translation matrix calculation is completed, and a comprehensive evaluation index system is established. The method can be effectively used for high-precision registration of outdoor large-area massive airborne LiDAR point cloud data, in addition, the algorithm has good tolerance to the number of point clouds, by combining downsampling, even if the number of point clouds reaches more than ten million levels, the registration time can st</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzkAUisoEmNVQAzAULFXJnWLpRBHdnJ_GDgAy3_LnxfdDc0AWZ-igeDKx6aDKBwSOC95AMXI39LElhQTSwD0kyin1xvGbBwmcOJFYSRMWcmWxWxEb7T6uSjW59OjvWwoSk8W0VGg1Lf3qjqU5b7e1c32n-cDCsg4Jg</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>LI PENGCHENG</creator><creator>LYU LIANG</creator><creator>TENG FEI</creator><creator>ZHOU YANG</creator><creator>HU XIAOFEI</creator><creator>SHI QUNSHAN</creator><creator>LIANG JING</creator><creator>ZHANG HENG</creator><creator>SHI SHIHAO</creator><creator>LAN CHAOZHEN</creator><scope>EVB</scope></search><sort><creationdate>20241122</creationdate><title>Mass airborne LiDAR point cloud rapid registration algorithm fusing color features</title><author>LI PENGCHENG ; LYU LIANG ; TENG FEI ; ZHOU YANG ; HU XIAOFEI ; SHI QUNSHAN ; LIANG JING ; ZHANG HENG ; SHI SHIHAO ; LAN CHAOZHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN119006545A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PENGCHENG</creatorcontrib><creatorcontrib>LYU LIANG</creatorcontrib><creatorcontrib>TENG FEI</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>HU XIAOFEI</creatorcontrib><creatorcontrib>SHI QUNSHAN</creatorcontrib><creatorcontrib>LIANG JING</creatorcontrib><creatorcontrib>ZHANG HENG</creatorcontrib><creatorcontrib>SHI SHIHAO</creatorcontrib><creatorcontrib>LAN CHAOZHEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PENGCHENG</au><au>LYU LIANG</au><au>TENG FEI</au><au>ZHOU YANG</au><au>HU XIAOFEI</au><au>SHI QUNSHAN</au><au>LIANG JING</au><au>ZHANG HENG</au><au>SHI SHIHAO</au><au>LAN CHAOZHEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mass airborne LiDAR point cloud rapid registration algorithm fusing color features</title><date>2024-11-22</date><risdate>2024</risdate><abstract>The invention discloses a mass airborne LiDAR point cloud rapid registration algorithm fused with color features, in the registration process, a point cloud rasterization strategy is used, color information of point clouds is fused into corresponding feature point extraction, a SuperPoint and SuperGlue combination mode is selected, feature point extraction and matching of large-difference point cloud data are realized, and the registration accuracy is improved. A singular value decomposition method is designed to be combined with a random sampling consensus algorithm, rotation translation matrix calculation is completed, and a comprehensive evaluation index system is established. The method can be effectively used for high-precision registration of outdoor large-area massive airborne LiDAR point cloud data, in addition, the algorithm has good tolerance to the number of point clouds, by combining downsampling, even if the number of point clouds reaches more than ten million levels, the registration time can st</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN119006545A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Mass airborne LiDAR point cloud rapid registration algorithm fusing color features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PENGCHENG&rft.date=2024-11-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN119006545A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |