Lane-level traffic flow prediction method based on dynamic traffic flow big data

The invention belongs to the field of traffic flow prediction, and discloses a lane-level traffic flow prediction method based on dynamic traffic flow big data, and the method comprises the steps: S1, collecting the historical traffic flow information of a to-be-predicted road network; s2, construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO ZHIWEI, CHEN MINJIE, TANG JIEXIA, LIU JUNJIE, WANG GUICHENG, LUO ZHENQUAN, LIU WEILIN, CHEN XUGAO, LIANG GUOXIONG, LIU HAIXIA, LI LINMAO, LI ZIJUN, YE KUNHAN, QIN WEN, CHEN ZHIPING, XIAO GUOMEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUO ZHIWEI
CHEN MINJIE
TANG JIEXIA
LIU JUNJIE
WANG GUICHENG
LUO ZHENQUAN
LIU WEILIN
CHEN XUGAO
LIANG GUOXIONG
LIU HAIXIA
LI LINMAO
LI ZIJUN
YE KUNHAN
QIN WEN
CHEN ZHIPING
XIAO GUOMEI
description The invention belongs to the field of traffic flow prediction, and discloses a lane-level traffic flow prediction method based on dynamic traffic flow big data, and the method comprises the steps: S1, collecting the historical traffic flow information of a to-be-predicted road network; s2, constructing a road network historical traffic flow information matrix, and processing the road network historical traffic flow information matrix by using expansion convolution; constructing the traffic flow information of the same node in the road network at different historical times into vectors, and calculating a learnable matrix based on the vectors of all nodes; s3, constructing a spatial feature adjacency matrix based on data driving; and S4, a gating structure is designed to integrate the time features and the space features, and the gating structure is designed based on an attention mechanism and global pooling operation to obtain a final prediction result. According to the method, the time features are extracted
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118865661A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118865661A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118865661A3</originalsourceid><addsrcrecordid>eNrjZAjwScxL1c1JLUvNUSgpSkxLy0xWSMvJL1coKEpNyUwuyczPU8hNLcnIT1FISixOTVEA8lMq8xJzgepQ1CdlpiukJJYk8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLCzNTMzNDR2Ni1AAAYFQ23Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lane-level traffic flow prediction method based on dynamic traffic flow big data</title><source>esp@cenet</source><creator>LUO ZHIWEI ; CHEN MINJIE ; TANG JIEXIA ; LIU JUNJIE ; WANG GUICHENG ; LUO ZHENQUAN ; LIU WEILIN ; CHEN XUGAO ; LIANG GUOXIONG ; LIU HAIXIA ; LI LINMAO ; LI ZIJUN ; YE KUNHAN ; QIN WEN ; CHEN ZHIPING ; XIAO GUOMEI</creator><creatorcontrib>LUO ZHIWEI ; CHEN MINJIE ; TANG JIEXIA ; LIU JUNJIE ; WANG GUICHENG ; LUO ZHENQUAN ; LIU WEILIN ; CHEN XUGAO ; LIANG GUOXIONG ; LIU HAIXIA ; LI LINMAO ; LI ZIJUN ; YE KUNHAN ; QIN WEN ; CHEN ZHIPING ; XIAO GUOMEI</creatorcontrib><description>The invention belongs to the field of traffic flow prediction, and discloses a lane-level traffic flow prediction method based on dynamic traffic flow big data, and the method comprises the steps: S1, collecting the historical traffic flow information of a to-be-predicted road network; s2, constructing a road network historical traffic flow information matrix, and processing the road network historical traffic flow information matrix by using expansion convolution; constructing the traffic flow information of the same node in the road network at different historical times into vectors, and calculating a learnable matrix based on the vectors of all nodes; s3, constructing a spatial feature adjacency matrix based on data driving; and S4, a gating structure is designed to integrate the time features and the space features, and the gating structure is designed based on an attention mechanism and global pooling operation to obtain a final prediction result. According to the method, the time features are extracted</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SIGNALLING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241029&amp;DB=EPODOC&amp;CC=CN&amp;NR=118865661A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241029&amp;DB=EPODOC&amp;CC=CN&amp;NR=118865661A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO ZHIWEI</creatorcontrib><creatorcontrib>CHEN MINJIE</creatorcontrib><creatorcontrib>TANG JIEXIA</creatorcontrib><creatorcontrib>LIU JUNJIE</creatorcontrib><creatorcontrib>WANG GUICHENG</creatorcontrib><creatorcontrib>LUO ZHENQUAN</creatorcontrib><creatorcontrib>LIU WEILIN</creatorcontrib><creatorcontrib>CHEN XUGAO</creatorcontrib><creatorcontrib>LIANG GUOXIONG</creatorcontrib><creatorcontrib>LIU HAIXIA</creatorcontrib><creatorcontrib>LI LINMAO</creatorcontrib><creatorcontrib>LI ZIJUN</creatorcontrib><creatorcontrib>YE KUNHAN</creatorcontrib><creatorcontrib>QIN WEN</creatorcontrib><creatorcontrib>CHEN ZHIPING</creatorcontrib><creatorcontrib>XIAO GUOMEI</creatorcontrib><title>Lane-level traffic flow prediction method based on dynamic traffic flow big data</title><description>The invention belongs to the field of traffic flow prediction, and discloses a lane-level traffic flow prediction method based on dynamic traffic flow big data, and the method comprises the steps: S1, collecting the historical traffic flow information of a to-be-predicted road network; s2, constructing a road network historical traffic flow information matrix, and processing the road network historical traffic flow information matrix by using expansion convolution; constructing the traffic flow information of the same node in the road network at different historical times into vectors, and calculating a learnable matrix based on the vectors of all nodes; s3, constructing a spatial feature adjacency matrix based on data driving; and S4, a gating structure is designed to integrate the time features and the space features, and the gating structure is designed based on an attention mechanism and global pooling operation to obtain a final prediction result. According to the method, the time features are extracted</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwScxL1c1JLUvNUSgpSkxLy0xWSMvJL1coKEpNyUwuyczPU8hNLcnIT1FISixOTVEA8lMq8xJzgepQ1CdlpiukJJYk8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLCzNTMzNDR2Ni1AAAYFQ23Q</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>LUO ZHIWEI</creator><creator>CHEN MINJIE</creator><creator>TANG JIEXIA</creator><creator>LIU JUNJIE</creator><creator>WANG GUICHENG</creator><creator>LUO ZHENQUAN</creator><creator>LIU WEILIN</creator><creator>CHEN XUGAO</creator><creator>LIANG GUOXIONG</creator><creator>LIU HAIXIA</creator><creator>LI LINMAO</creator><creator>LI ZIJUN</creator><creator>YE KUNHAN</creator><creator>QIN WEN</creator><creator>CHEN ZHIPING</creator><creator>XIAO GUOMEI</creator><scope>EVB</scope></search><sort><creationdate>20241029</creationdate><title>Lane-level traffic flow prediction method based on dynamic traffic flow big data</title><author>LUO ZHIWEI ; CHEN MINJIE ; TANG JIEXIA ; LIU JUNJIE ; WANG GUICHENG ; LUO ZHENQUAN ; LIU WEILIN ; CHEN XUGAO ; LIANG GUOXIONG ; LIU HAIXIA ; LI LINMAO ; LI ZIJUN ; YE KUNHAN ; QIN WEN ; CHEN ZHIPING ; XIAO GUOMEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118865661A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO ZHIWEI</creatorcontrib><creatorcontrib>CHEN MINJIE</creatorcontrib><creatorcontrib>TANG JIEXIA</creatorcontrib><creatorcontrib>LIU JUNJIE</creatorcontrib><creatorcontrib>WANG GUICHENG</creatorcontrib><creatorcontrib>LUO ZHENQUAN</creatorcontrib><creatorcontrib>LIU WEILIN</creatorcontrib><creatorcontrib>CHEN XUGAO</creatorcontrib><creatorcontrib>LIANG GUOXIONG</creatorcontrib><creatorcontrib>LIU HAIXIA</creatorcontrib><creatorcontrib>LI LINMAO</creatorcontrib><creatorcontrib>LI ZIJUN</creatorcontrib><creatorcontrib>YE KUNHAN</creatorcontrib><creatorcontrib>QIN WEN</creatorcontrib><creatorcontrib>CHEN ZHIPING</creatorcontrib><creatorcontrib>XIAO GUOMEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO ZHIWEI</au><au>CHEN MINJIE</au><au>TANG JIEXIA</au><au>LIU JUNJIE</au><au>WANG GUICHENG</au><au>LUO ZHENQUAN</au><au>LIU WEILIN</au><au>CHEN XUGAO</au><au>LIANG GUOXIONG</au><au>LIU HAIXIA</au><au>LI LINMAO</au><au>LI ZIJUN</au><au>YE KUNHAN</au><au>QIN WEN</au><au>CHEN ZHIPING</au><au>XIAO GUOMEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lane-level traffic flow prediction method based on dynamic traffic flow big data</title><date>2024-10-29</date><risdate>2024</risdate><abstract>The invention belongs to the field of traffic flow prediction, and discloses a lane-level traffic flow prediction method based on dynamic traffic flow big data, and the method comprises the steps: S1, collecting the historical traffic flow information of a to-be-predicted road network; s2, constructing a road network historical traffic flow information matrix, and processing the road network historical traffic flow information matrix by using expansion convolution; constructing the traffic flow information of the same node in the road network at different historical times into vectors, and calculating a learnable matrix based on the vectors of all nodes; s3, constructing a spatial feature adjacency matrix based on data driving; and S4, a gating structure is designed to integrate the time features and the space features, and the gating structure is designed based on an attention mechanism and global pooling operation to obtain a final prediction result. According to the method, the time features are extracted</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118865661A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SIGNALLING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAFFIC CONTROL SYSTEMS
title Lane-level traffic flow prediction method based on dynamic traffic flow big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20ZHIWEI&rft.date=2024-10-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118865661A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true