Task allocation method and system based on extreme learning machine cooperating with doliolaria glans group optimization algorithm
The invention belongs to the technical field of crowdsourcing task allocation, and particularly relates to a task allocation method and system of an extreme learning machine cooperating with a doliovessel swarm optimization algorithm, based on attributes of workers and tasks, an objective function i...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG YINGJIE WANG XUAN LI XIAOHUI ZOU XINHUI CHI HAOKUN HAN SHUANG PANG JINWEI XU SHUZHEN |
description | The invention belongs to the technical field of crowdsourcing task allocation, and particularly relates to a task allocation method and system of an extreme learning machine cooperating with a doliovessel swarm optimization algorithm, based on attributes of workers and tasks, an objective function is constructed, and a crowdsourcing task allocation scheme enabling the objective function to be maximized is obtained through three stages of task allocation in sequence, converting a multi-dimensional crowdsourcing task allocation optimization problem into a one-dimensional optimization problem, and obtaining a first-stage allocation result through a doliolaria group optimization algorithm; in the second-stage allocation, combining the dimensions with high correlation into a population, and updating the population through a doliolaria group optimization algorithm or a trained extreme learning machine to obtain a second-stage allocation result; in the third-stage allocation, the trained extreme learning machine or |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118863468A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118863468A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118863468A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQRNNQIOAOywEooqAoLYpAVFTpo8VenBW217KN-JScHEtwAKqR3rzRzKv3gOkKaK0ozCweHOVJNKDXkJ4pk4MzJtJQKnrkSI7AEkbP3oBDNbEnUCKBYtkXduc8gRbLYjEygrHoE5gotwASMjt-fY_QGolFdstqdkGbaPXLRbU-7If-uKEgI6WAijzlsT_Vdde1zbbtds0_zgdgnks3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Task allocation method and system based on extreme learning machine cooperating with doliolaria glans group optimization algorithm</title><source>esp@cenet</source><creator>WANG YINGJIE ; WANG XUAN ; LI XIAOHUI ; ZOU XINHUI ; CHI HAOKUN ; HAN SHUANG ; PANG JINWEI ; XU SHUZHEN</creator><creatorcontrib>WANG YINGJIE ; WANG XUAN ; LI XIAOHUI ; ZOU XINHUI ; CHI HAOKUN ; HAN SHUANG ; PANG JINWEI ; XU SHUZHEN</creatorcontrib><description>The invention belongs to the technical field of crowdsourcing task allocation, and particularly relates to a task allocation method and system of an extreme learning machine cooperating with a doliovessel swarm optimization algorithm, based on attributes of workers and tasks, an objective function is constructed, and a crowdsourcing task allocation scheme enabling the objective function to be maximized is obtained through three stages of task allocation in sequence, converting a multi-dimensional crowdsourcing task allocation optimization problem into a one-dimensional optimization problem, and obtaining a first-stage allocation result through a doliolaria group optimization algorithm; in the second-stage allocation, combining the dimensions with high correlation into a population, and updating the population through a doliolaria group optimization algorithm or a trained extreme learning machine to obtain a second-stage allocation result; in the third-stage allocation, the trained extreme learning machine or</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241029&DB=EPODOC&CC=CN&NR=118863468A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241029&DB=EPODOC&CC=CN&NR=118863468A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YINGJIE</creatorcontrib><creatorcontrib>WANG XUAN</creatorcontrib><creatorcontrib>LI XIAOHUI</creatorcontrib><creatorcontrib>ZOU XINHUI</creatorcontrib><creatorcontrib>CHI HAOKUN</creatorcontrib><creatorcontrib>HAN SHUANG</creatorcontrib><creatorcontrib>PANG JINWEI</creatorcontrib><creatorcontrib>XU SHUZHEN</creatorcontrib><title>Task allocation method and system based on extreme learning machine cooperating with doliolaria glans group optimization algorithm</title><description>The invention belongs to the technical field of crowdsourcing task allocation, and particularly relates to a task allocation method and system of an extreme learning machine cooperating with a doliovessel swarm optimization algorithm, based on attributes of workers and tasks, an objective function is constructed, and a crowdsourcing task allocation scheme enabling the objective function to be maximized is obtained through three stages of task allocation in sequence, converting a multi-dimensional crowdsourcing task allocation optimization problem into a one-dimensional optimization problem, and obtaining a first-stage allocation result through a doliolaria group optimization algorithm; in the second-stage allocation, combining the dimensions with high correlation into a population, and updating the population through a doliolaria group optimization algorithm or a trained extreme learning machine to obtain a second-stage allocation result; in the third-stage allocation, the trained extreme learning machine or</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQRNNQIOAOywEooqAoLYpAVFTpo8VenBW217KN-JScHEtwAKqR3rzRzKv3gOkKaK0ozCweHOVJNKDXkJ4pk4MzJtJQKnrkSI7AEkbP3oBDNbEnUCKBYtkXduc8gRbLYjEygrHoE5gotwASMjt-fY_QGolFdstqdkGbaPXLRbU-7If-uKEgI6WAijzlsT_Vdde1zbbtds0_zgdgnks3</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>WANG YINGJIE</creator><creator>WANG XUAN</creator><creator>LI XIAOHUI</creator><creator>ZOU XINHUI</creator><creator>CHI HAOKUN</creator><creator>HAN SHUANG</creator><creator>PANG JINWEI</creator><creator>XU SHUZHEN</creator><scope>EVB</scope></search><sort><creationdate>20241029</creationdate><title>Task allocation method and system based on extreme learning machine cooperating with doliolaria glans group optimization algorithm</title><author>WANG YINGJIE ; WANG XUAN ; LI XIAOHUI ; ZOU XINHUI ; CHI HAOKUN ; HAN SHUANG ; PANG JINWEI ; XU SHUZHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118863468A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YINGJIE</creatorcontrib><creatorcontrib>WANG XUAN</creatorcontrib><creatorcontrib>LI XIAOHUI</creatorcontrib><creatorcontrib>ZOU XINHUI</creatorcontrib><creatorcontrib>CHI HAOKUN</creatorcontrib><creatorcontrib>HAN SHUANG</creatorcontrib><creatorcontrib>PANG JINWEI</creatorcontrib><creatorcontrib>XU SHUZHEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YINGJIE</au><au>WANG XUAN</au><au>LI XIAOHUI</au><au>ZOU XINHUI</au><au>CHI HAOKUN</au><au>HAN SHUANG</au><au>PANG JINWEI</au><au>XU SHUZHEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Task allocation method and system based on extreme learning machine cooperating with doliolaria glans group optimization algorithm</title><date>2024-10-29</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of crowdsourcing task allocation, and particularly relates to a task allocation method and system of an extreme learning machine cooperating with a doliovessel swarm optimization algorithm, based on attributes of workers and tasks, an objective function is constructed, and a crowdsourcing task allocation scheme enabling the objective function to be maximized is obtained through three stages of task allocation in sequence, converting a multi-dimensional crowdsourcing task allocation optimization problem into a one-dimensional optimization problem, and obtaining a first-stage allocation result through a doliolaria group optimization algorithm; in the second-stage allocation, combining the dimensions with high correlation into a population, and updating the population through a doliolaria group optimization algorithm or a trained extreme learning machine to obtain a second-stage allocation result; in the third-stage allocation, the trained extreme learning machine or</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118863468A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Task allocation method and system based on extreme learning machine cooperating with doliolaria glans group optimization algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YINGJIE&rft.date=2024-10-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118863468A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |