Haze image restoration method based on deep learning and gamma correction

The invention discloses a haze image restoration method based on deep learning and gamma correction. The method comprises the following steps: taking an image restoration architecture Uform based on transform as a generator of a generative adversarial network; inputting the foggy image into a genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DONG WENDE, XU TIANHENG, ZHANG YANLI, LI QIANRAN, XIAO LIJIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DONG WENDE
XU TIANHENG
ZHANG YANLI
LI QIANRAN
XIAO LIJIAN
description The invention discloses a haze image restoration method based on deep learning and gamma correction. The method comprises the following steps: taking an image restoration architecture Uform based on transform as a generator of a generative adversarial network; inputting the foggy image into a generator of the adversarial network to generate a defogged picture; the discriminator compares the defogged picture generated by the generator with a real picture without fog, and optimizes generative adversarial network model parameters by minimizing a Charbonnier loss function; and repeating the above operations until the number of iterations set by training, adding a gamma correction function in the forward propagation reasoning process of the trained generator, and performing power transformation on the image data to adjust the nonlinear response so as to realize more accurate light intensity expression. According to the method, a gamma correction image is divided into RGB channels, each channel is multiplied by a c
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118840291A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118840291A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118840291A3</originalsourceid><addsrcrecordid>eNqNiz0KAjEUBtNYyOodngdYMGqxlrIoa2NlvzyTz2xg88NLKk-vggewGgZmluo68AvkAzuQoNQkXH2KFFCnZOnBBZY-boFMM1iij444WnIcApNJIjDfZaUWT54L1j82anM53_uhRU4jSmaDiDr2N6277rDdHfVp_0_zBsBxNHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Haze image restoration method based on deep learning and gamma correction</title><source>esp@cenet</source><creator>DONG WENDE ; XU TIANHENG ; ZHANG YANLI ; LI QIANRAN ; XIAO LIJIAN</creator><creatorcontrib>DONG WENDE ; XU TIANHENG ; ZHANG YANLI ; LI QIANRAN ; XIAO LIJIAN</creatorcontrib><description>The invention discloses a haze image restoration method based on deep learning and gamma correction. The method comprises the following steps: taking an image restoration architecture Uform based on transform as a generator of a generative adversarial network; inputting the foggy image into a generator of the adversarial network to generate a defogged picture; the discriminator compares the defogged picture generated by the generator with a real picture without fog, and optimizes generative adversarial network model parameters by minimizing a Charbonnier loss function; and repeating the above operations until the number of iterations set by training, adding a gamma correction function in the forward propagation reasoning process of the trained generator, and performing power transformation on the image data to adjust the nonlinear response so as to realize more accurate light intensity expression. According to the method, a gamma correction image is divided into RGB channels, each channel is multiplied by a c</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241025&amp;DB=EPODOC&amp;CC=CN&amp;NR=118840291A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241025&amp;DB=EPODOC&amp;CC=CN&amp;NR=118840291A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DONG WENDE</creatorcontrib><creatorcontrib>XU TIANHENG</creatorcontrib><creatorcontrib>ZHANG YANLI</creatorcontrib><creatorcontrib>LI QIANRAN</creatorcontrib><creatorcontrib>XIAO LIJIAN</creatorcontrib><title>Haze image restoration method based on deep learning and gamma correction</title><description>The invention discloses a haze image restoration method based on deep learning and gamma correction. The method comprises the following steps: taking an image restoration architecture Uform based on transform as a generator of a generative adversarial network; inputting the foggy image into a generator of the adversarial network to generate a defogged picture; the discriminator compares the defogged picture generated by the generator with a real picture without fog, and optimizes generative adversarial network model parameters by minimizing a Charbonnier loss function; and repeating the above operations until the number of iterations set by training, adding a gamma correction function in the forward propagation reasoning process of the trained generator, and performing power transformation on the image data to adjust the nonlinear response so as to realize more accurate light intensity expression. According to the method, a gamma correction image is divided into RGB channels, each channel is multiplied by a c</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNiz0KAjEUBtNYyOodngdYMGqxlrIoa2NlvzyTz2xg88NLKk-vggewGgZmluo68AvkAzuQoNQkXH2KFFCnZOnBBZY-boFMM1iij444WnIcApNJIjDfZaUWT54L1j82anM53_uhRU4jSmaDiDr2N6277rDdHfVp_0_zBsBxNHI</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>DONG WENDE</creator><creator>XU TIANHENG</creator><creator>ZHANG YANLI</creator><creator>LI QIANRAN</creator><creator>XIAO LIJIAN</creator><scope>EVB</scope></search><sort><creationdate>20241025</creationdate><title>Haze image restoration method based on deep learning and gamma correction</title><author>DONG WENDE ; XU TIANHENG ; ZHANG YANLI ; LI QIANRAN ; XIAO LIJIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118840291A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DONG WENDE</creatorcontrib><creatorcontrib>XU TIANHENG</creatorcontrib><creatorcontrib>ZHANG YANLI</creatorcontrib><creatorcontrib>LI QIANRAN</creatorcontrib><creatorcontrib>XIAO LIJIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DONG WENDE</au><au>XU TIANHENG</au><au>ZHANG YANLI</au><au>LI QIANRAN</au><au>XIAO LIJIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Haze image restoration method based on deep learning and gamma correction</title><date>2024-10-25</date><risdate>2024</risdate><abstract>The invention discloses a haze image restoration method based on deep learning and gamma correction. The method comprises the following steps: taking an image restoration architecture Uform based on transform as a generator of a generative adversarial network; inputting the foggy image into a generator of the adversarial network to generate a defogged picture; the discriminator compares the defogged picture generated by the generator with a real picture without fog, and optimizes generative adversarial network model parameters by minimizing a Charbonnier loss function; and repeating the above operations until the number of iterations set by training, adding a gamma correction function in the forward propagation reasoning process of the trained generator, and performing power transformation on the image data to adjust the nonlinear response so as to realize more accurate light intensity expression. According to the method, a gamma correction image is divided into RGB channels, each channel is multiplied by a c</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118840291A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Haze image restoration method based on deep learning and gamma correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DONG%20WENDE&rft.date=2024-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118840291A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true