Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method
The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target bui...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIANG XINYU CHEN YI ZHANG JIAHAO WANG XIN LU YUANYU LIU QIANG BU JIAJUN YU KAN ZHANG XINGHUA XU CHUANZI WANG FENGYUAN LIU HONGWEI LI ANG LI NAIYI HONG XIAO LIU LU YANG YI MA CHUANG LI LEI |
description | The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118839869A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118839869A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118839869A3</originalsourceid><addsrcrecordid>eNqNTbsOgjAUZXEw6j_UD-hASAyMhmhcdHInl_YCN7m0TR8DTn66lfgBTifnvS3e98SRpKYZTSBrgAXE6KlPEYWyyTGZUQyJWTINKNWiGEWfiPXXQIN-XHLQhDS7mAeEmsCDiujpBasARgvnUZNaaXI667k7Y5ys3hebATjg4Ye74ni9PNubRGc7DA5U_ohd-yjLuq6a-tScq38yH0iHSzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><source>esp@cenet</source><creator>XIANG XINYU ; CHEN YI ; ZHANG JIAHAO ; WANG XIN ; LU YUANYU ; LIU QIANG ; BU JIAJUN ; YU KAN ; ZHANG XINGHUA ; XU CHUANZI ; WANG FENGYUAN ; LIU HONGWEI ; LI ANG ; LI NAIYI ; HONG XIAO ; LIU LU ; YANG YI ; MA CHUANG ; LI LEI</creator><creatorcontrib>XIANG XINYU ; CHEN YI ; ZHANG JIAHAO ; WANG XIN ; LU YUANYU ; LIU QIANG ; BU JIAJUN ; YU KAN ; ZHANG XINGHUA ; XU CHUANZI ; WANG FENGYUAN ; LIU HONGWEI ; LI ANG ; LI NAIYI ; HONG XIAO ; LIU LU ; YANG YI ; MA CHUANG ; LI LEI</creatorcontrib><description>The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241025&DB=EPODOC&CC=CN&NR=118839869A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241025&DB=EPODOC&CC=CN&NR=118839869A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIANG XINYU</creatorcontrib><creatorcontrib>CHEN YI</creatorcontrib><creatorcontrib>ZHANG JIAHAO</creatorcontrib><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>LU YUANYU</creatorcontrib><creatorcontrib>LIU QIANG</creatorcontrib><creatorcontrib>BU JIAJUN</creatorcontrib><creatorcontrib>YU KAN</creatorcontrib><creatorcontrib>ZHANG XINGHUA</creatorcontrib><creatorcontrib>XU CHUANZI</creatorcontrib><creatorcontrib>WANG FENGYUAN</creatorcontrib><creatorcontrib>LIU HONGWEI</creatorcontrib><creatorcontrib>LI ANG</creatorcontrib><creatorcontrib>LI NAIYI</creatorcontrib><creatorcontrib>HONG XIAO</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>YANG YI</creatorcontrib><creatorcontrib>MA CHUANG</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><description>The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNTbsOgjAUZXEw6j_UD-hASAyMhmhcdHInl_YCN7m0TR8DTn66lfgBTifnvS3e98SRpKYZTSBrgAXE6KlPEYWyyTGZUQyJWTINKNWiGEWfiPXXQIN-XHLQhDS7mAeEmsCDiujpBasARgvnUZNaaXI667k7Y5ys3hebATjg4Ye74ni9PNubRGc7DA5U_ohd-yjLuq6a-tScq38yH0iHSzE</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>XIANG XINYU</creator><creator>CHEN YI</creator><creator>ZHANG JIAHAO</creator><creator>WANG XIN</creator><creator>LU YUANYU</creator><creator>LIU QIANG</creator><creator>BU JIAJUN</creator><creator>YU KAN</creator><creator>ZHANG XINGHUA</creator><creator>XU CHUANZI</creator><creator>WANG FENGYUAN</creator><creator>LIU HONGWEI</creator><creator>LI ANG</creator><creator>LI NAIYI</creator><creator>HONG XIAO</creator><creator>LIU LU</creator><creator>YANG YI</creator><creator>MA CHUANG</creator><creator>LI LEI</creator><scope>EVB</scope></search><sort><creationdate>20241025</creationdate><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><author>XIANG XINYU ; CHEN YI ; ZHANG JIAHAO ; WANG XIN ; LU YUANYU ; LIU QIANG ; BU JIAJUN ; YU KAN ; ZHANG XINGHUA ; XU CHUANZI ; WANG FENGYUAN ; LIU HONGWEI ; LI ANG ; LI NAIYI ; HONG XIAO ; LIU LU ; YANG YI ; MA CHUANG ; LI LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118839869A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIANG XINYU</creatorcontrib><creatorcontrib>CHEN YI</creatorcontrib><creatorcontrib>ZHANG JIAHAO</creatorcontrib><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>LU YUANYU</creatorcontrib><creatorcontrib>LIU QIANG</creatorcontrib><creatorcontrib>BU JIAJUN</creatorcontrib><creatorcontrib>YU KAN</creatorcontrib><creatorcontrib>ZHANG XINGHUA</creatorcontrib><creatorcontrib>XU CHUANZI</creatorcontrib><creatorcontrib>WANG FENGYUAN</creatorcontrib><creatorcontrib>LIU HONGWEI</creatorcontrib><creatorcontrib>LI ANG</creatorcontrib><creatorcontrib>LI NAIYI</creatorcontrib><creatorcontrib>HONG XIAO</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>YANG YI</creatorcontrib><creatorcontrib>MA CHUANG</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIANG XINYU</au><au>CHEN YI</au><au>ZHANG JIAHAO</au><au>WANG XIN</au><au>LU YUANYU</au><au>LIU QIANG</au><au>BU JIAJUN</au><au>YU KAN</au><au>ZHANG XINGHUA</au><au>XU CHUANZI</au><au>WANG FENGYUAN</au><au>LIU HONGWEI</au><au>LI ANG</au><au>LI NAIYI</au><au>HONG XIAO</au><au>LIU LU</au><au>YANG YI</au><au>MA CHUANG</au><au>LI LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><date>2024-10-25</date><risdate>2024</risdate><abstract>The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118839869A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIANG%20XINYU&rft.date=2024-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118839869A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |