Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method

The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target bui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIANG XINYU, CHEN YI, ZHANG JIAHAO, WANG XIN, LU YUANYU, LIU QIANG, BU JIAJUN, YU KAN, ZHANG XINGHUA, XU CHUANZI, WANG FENGYUAN, LIU HONGWEI, LI ANG, LI NAIYI, HONG XIAO, LIU LU, YANG YI, MA CHUANG, LI LEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIANG XINYU
CHEN YI
ZHANG JIAHAO
WANG XIN
LU YUANYU
LIU QIANG
BU JIAJUN
YU KAN
ZHANG XINGHUA
XU CHUANZI
WANG FENGYUAN
LIU HONGWEI
LI ANG
LI NAIYI
HONG XIAO
LIU LU
YANG YI
MA CHUANG
LI LEI
description The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118839869A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118839869A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118839869A3</originalsourceid><addsrcrecordid>eNqNTbsOgjAUZXEw6j_UD-hASAyMhmhcdHInl_YCN7m0TR8DTn66lfgBTifnvS3e98SRpKYZTSBrgAXE6KlPEYWyyTGZUQyJWTINKNWiGEWfiPXXQIN-XHLQhDS7mAeEmsCDiujpBasARgvnUZNaaXI667k7Y5ys3hebATjg4Ye74ni9PNubRGc7DA5U_ohd-yjLuq6a-tScq38yH0iHSzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><source>esp@cenet</source><creator>XIANG XINYU ; CHEN YI ; ZHANG JIAHAO ; WANG XIN ; LU YUANYU ; LIU QIANG ; BU JIAJUN ; YU KAN ; ZHANG XINGHUA ; XU CHUANZI ; WANG FENGYUAN ; LIU HONGWEI ; LI ANG ; LI NAIYI ; HONG XIAO ; LIU LU ; YANG YI ; MA CHUANG ; LI LEI</creator><creatorcontrib>XIANG XINYU ; CHEN YI ; ZHANG JIAHAO ; WANG XIN ; LU YUANYU ; LIU QIANG ; BU JIAJUN ; YU KAN ; ZHANG XINGHUA ; XU CHUANZI ; WANG FENGYUAN ; LIU HONGWEI ; LI ANG ; LI NAIYI ; HONG XIAO ; LIU LU ; YANG YI ; MA CHUANG ; LI LEI</creatorcontrib><description>The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241025&amp;DB=EPODOC&amp;CC=CN&amp;NR=118839869A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241025&amp;DB=EPODOC&amp;CC=CN&amp;NR=118839869A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIANG XINYU</creatorcontrib><creatorcontrib>CHEN YI</creatorcontrib><creatorcontrib>ZHANG JIAHAO</creatorcontrib><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>LU YUANYU</creatorcontrib><creatorcontrib>LIU QIANG</creatorcontrib><creatorcontrib>BU JIAJUN</creatorcontrib><creatorcontrib>YU KAN</creatorcontrib><creatorcontrib>ZHANG XINGHUA</creatorcontrib><creatorcontrib>XU CHUANZI</creatorcontrib><creatorcontrib>WANG FENGYUAN</creatorcontrib><creatorcontrib>LIU HONGWEI</creatorcontrib><creatorcontrib>LI ANG</creatorcontrib><creatorcontrib>LI NAIYI</creatorcontrib><creatorcontrib>HONG XIAO</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>YANG YI</creatorcontrib><creatorcontrib>MA CHUANG</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><description>The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNTbsOgjAUZXEw6j_UD-hASAyMhmhcdHInl_YCN7m0TR8DTn66lfgBTifnvS3e98SRpKYZTSBrgAXE6KlPEYWyyTGZUQyJWTINKNWiGEWfiPXXQIN-XHLQhDS7mAeEmsCDiujpBasARgvnUZNaaXI667k7Y5ys3hebATjg4Ye74ni9PNubRGc7DA5U_ohd-yjLuq6a-tScq38yH0iHSzE</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>XIANG XINYU</creator><creator>CHEN YI</creator><creator>ZHANG JIAHAO</creator><creator>WANG XIN</creator><creator>LU YUANYU</creator><creator>LIU QIANG</creator><creator>BU JIAJUN</creator><creator>YU KAN</creator><creator>ZHANG XINGHUA</creator><creator>XU CHUANZI</creator><creator>WANG FENGYUAN</creator><creator>LIU HONGWEI</creator><creator>LI ANG</creator><creator>LI NAIYI</creator><creator>HONG XIAO</creator><creator>LIU LU</creator><creator>YANG YI</creator><creator>MA CHUANG</creator><creator>LI LEI</creator><scope>EVB</scope></search><sort><creationdate>20241025</creationdate><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><author>XIANG XINYU ; CHEN YI ; ZHANG JIAHAO ; WANG XIN ; LU YUANYU ; LIU QIANG ; BU JIAJUN ; YU KAN ; ZHANG XINGHUA ; XU CHUANZI ; WANG FENGYUAN ; LIU HONGWEI ; LI ANG ; LI NAIYI ; HONG XIAO ; LIU LU ; YANG YI ; MA CHUANG ; LI LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118839869A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIANG XINYU</creatorcontrib><creatorcontrib>CHEN YI</creatorcontrib><creatorcontrib>ZHANG JIAHAO</creatorcontrib><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>LU YUANYU</creatorcontrib><creatorcontrib>LIU QIANG</creatorcontrib><creatorcontrib>BU JIAJUN</creatorcontrib><creatorcontrib>YU KAN</creatorcontrib><creatorcontrib>ZHANG XINGHUA</creatorcontrib><creatorcontrib>XU CHUANZI</creatorcontrib><creatorcontrib>WANG FENGYUAN</creatorcontrib><creatorcontrib>LIU HONGWEI</creatorcontrib><creatorcontrib>LI ANG</creatorcontrib><creatorcontrib>LI NAIYI</creatorcontrib><creatorcontrib>HONG XIAO</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>YANG YI</creatorcontrib><creatorcontrib>MA CHUANG</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIANG XINYU</au><au>CHEN YI</au><au>ZHANG JIAHAO</au><au>WANG XIN</au><au>LU YUANYU</au><au>LIU QIANG</au><au>BU JIAJUN</au><au>YU KAN</au><au>ZHANG XINGHUA</au><au>XU CHUANZI</au><au>WANG FENGYUAN</au><au>LIU HONGWEI</au><au>LI ANG</au><au>LI NAIYI</au><au>HONG XIAO</au><au>LIU LU</au><au>YANG YI</au><au>MA CHUANG</au><au>LI LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method</title><date>2024-10-25</date><risdate>2024</risdate><abstract>The invention provides a multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method, and relates to the technical field of data processing, and the method comprises the steps: obtaining multi-dimensional attributes of a target building in a full life cycle, the multi-dimensional attributes comprise multiple of geometric feature attributes, environment feature attributes, functional feature attributes and life cycle feature attributes; analyzing and processing the mapping association relationship between the building energy consumption and the multi-dimensional attributes based on a deep learning neural network, constructing a neural network with multiple neurons, and establishing a connection relationship between the neurons; performing training processing on gradient parameters of the neural network based on the pre-training data of the different life cycles to obtain gradient parameters corresponding to each neuron in the different life c</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118839869A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Multi-dimensional attribute coupling full-life-cycle building energy consumption characterization and prediction updating method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIANG%20XINYU&rft.date=2024-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118839869A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true