Machine learning segment routing for multiple traffic matrices

In some embodiments, a method may be provided, the method comprising: receiving a first traffic matrix; receiving information about a link associated with each segment of the network; determining a total amount of segment streams using at least one non-linear deflection parameter applied to the traf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KODIALAM MURALIDHARAN, LAKSHMAN T V
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KODIALAM MURALIDHARAN
LAKSHMAN T V
description In some embodiments, a method may be provided, the method comprising: receiving a first traffic matrix; receiving information about a link associated with each segment of the network; determining a total amount of segment streams using at least one non-linear deflection parameter applied to the traffic requirements of the first traffic matrix; determining a link flow for each link using the total amount of segment flows and a second input of the machine learning model; determining a link utilization rate of each link by using the link flow and the capacity of each link; by adjusting at least a value of at least one non-linear deflection parameter, a gradient descent method is used to learn a minimum value of a maximum amount of link utilization over the link by the machine learning model. Related systems, methods, and articles of manufacture are also disclosed. 在一些实施例中,可提供一种方法,该方法包括:接收第一业务矩阵;接收关于与网络的每个分段相关联的链路的信息;使用应用于第一业务矩阵的业务需求的至少一个非线性偏转参数,确定分段流的总量;使用分段流的总量、以及机器学习模型的第二输入,确定每个链路的链路流;使用链路流、以及每个链路的容量,确定每个链路的链路
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118802702A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118802702A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118802702A3</originalsourceid><addsrcrecordid>eNrjZLDzTUzOyMxLVchJTSzKy8xLVyhOTc9NzStRKMovLQHx0_KLFHJLc0oyC3JSFUqKEtPSMpMVchNLijKTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYWFgZG5gZGjMTFqAIKXMOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning segment routing for multiple traffic matrices</title><source>esp@cenet</source><creator>KODIALAM MURALIDHARAN ; LAKSHMAN T V</creator><creatorcontrib>KODIALAM MURALIDHARAN ; LAKSHMAN T V</creatorcontrib><description>In some embodiments, a method may be provided, the method comprising: receiving a first traffic matrix; receiving information about a link associated with each segment of the network; determining a total amount of segment streams using at least one non-linear deflection parameter applied to the traffic requirements of the first traffic matrix; determining a link flow for each link using the total amount of segment flows and a second input of the machine learning model; determining a link utilization rate of each link by using the link flow and the capacity of each link; by adjusting at least a value of at least one non-linear deflection parameter, a gradient descent method is used to learn a minimum value of a maximum amount of link utilization over the link by the machine learning model. Related systems, methods, and articles of manufacture are also disclosed. 在一些实施例中,可提供一种方法,该方法包括:接收第一业务矩阵;接收关于与网络的每个分段相关联的链路的信息;使用应用于第一业务矩阵的业务需求的至少一个非线性偏转参数,确定分段流的总量;使用分段流的总量、以及机器学习模型的第二输入,确定每个链路的链路流;使用链路流、以及每个链路的容量,确定每个链路的链路</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241018&amp;DB=EPODOC&amp;CC=CN&amp;NR=118802702A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241018&amp;DB=EPODOC&amp;CC=CN&amp;NR=118802702A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KODIALAM MURALIDHARAN</creatorcontrib><creatorcontrib>LAKSHMAN T V</creatorcontrib><title>Machine learning segment routing for multiple traffic matrices</title><description>In some embodiments, a method may be provided, the method comprising: receiving a first traffic matrix; receiving information about a link associated with each segment of the network; determining a total amount of segment streams using at least one non-linear deflection parameter applied to the traffic requirements of the first traffic matrix; determining a link flow for each link using the total amount of segment flows and a second input of the machine learning model; determining a link utilization rate of each link by using the link flow and the capacity of each link; by adjusting at least a value of at least one non-linear deflection parameter, a gradient descent method is used to learn a minimum value of a maximum amount of link utilization over the link by the machine learning model. Related systems, methods, and articles of manufacture are also disclosed. 在一些实施例中,可提供一种方法,该方法包括:接收第一业务矩阵;接收关于与网络的每个分段相关联的链路的信息;使用应用于第一业务矩阵的业务需求的至少一个非线性偏转参数,确定分段流的总量;使用分段流的总量、以及机器学习模型的第二输入,确定每个链路的链路流;使用链路流、以及每个链路的容量,确定每个链路的链路</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDzTUzOyMxLVchJTSzKy8xLVyhOTc9NzStRKMovLQHx0_KLFHJLc0oyC3JSFUqKEtPSMpMVchNLijKTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYWFgZG5gZGjMTFqAIKXMOk</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>KODIALAM MURALIDHARAN</creator><creator>LAKSHMAN T V</creator><scope>EVB</scope></search><sort><creationdate>20241018</creationdate><title>Machine learning segment routing for multiple traffic matrices</title><author>KODIALAM MURALIDHARAN ; LAKSHMAN T V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118802702A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>KODIALAM MURALIDHARAN</creatorcontrib><creatorcontrib>LAKSHMAN T V</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KODIALAM MURALIDHARAN</au><au>LAKSHMAN T V</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning segment routing for multiple traffic matrices</title><date>2024-10-18</date><risdate>2024</risdate><abstract>In some embodiments, a method may be provided, the method comprising: receiving a first traffic matrix; receiving information about a link associated with each segment of the network; determining a total amount of segment streams using at least one non-linear deflection parameter applied to the traffic requirements of the first traffic matrix; determining a link flow for each link using the total amount of segment flows and a second input of the machine learning model; determining a link utilization rate of each link by using the link flow and the capacity of each link; by adjusting at least a value of at least one non-linear deflection parameter, a gradient descent method is used to learn a minimum value of a maximum amount of link utilization over the link by the machine learning model. Related systems, methods, and articles of manufacture are also disclosed. 在一些实施例中,可提供一种方法,该方法包括:接收第一业务矩阵;接收关于与网络的每个分段相关联的链路的信息;使用应用于第一业务矩阵的业务需求的至少一个非线性偏转参数,确定分段流的总量;使用分段流的总量、以及机器学习模型的第二输入,确定每个链路的链路流;使用链路流、以及每个链路的容量,确定每个链路的链路</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118802702A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Machine learning segment routing for multiple traffic matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KODIALAM%20MURALIDHARAN&rft.date=2024-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118802702A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true