Building cooling and heating load accurate prediction method based on double attention mechanisms and novel particle swarm optimization

The invention relates to a building cooling and heating load accurate prediction method based on a double attention mechanism and a novel particle swarm algorithm, and belongs to the technical field of load prediction. The building cooling and heating load accurate prediction method comprises the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU MINHUI, SUN JIAN, LIU DINGQUN, YANG YONGPING, CAI XIAOLONG, DU XIAOZE, SUN BINGRUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU MINHUI
SUN JIAN
LIU DINGQUN
YANG YONGPING
CAI XIAOLONG
DU XIAOZE
SUN BINGRUI
description The invention relates to a building cooling and heating load accurate prediction method based on a double attention mechanism and a novel particle swarm algorithm, and belongs to the technical field of load prediction. The building cooling and heating load accurate prediction method comprises the steps that building historical cooling and heating load data and related external influence factor data are acquired, and the acquired data are preprocessed; establishing and training a BiLSTM (Bidirectional Long Short Term Memory) time sequence load prediction model according to the preprocessed data; introducing a double attention mechanism to carry out weight distribution on the input features and the hidden state of the neural network; performing hyper-parameter optimization on the load prediction model by using a novel particle swarm algorithm; establishing an error correction model by using a CEEMD decomposition technology and a BiLSTM neural network; and performing performance evaluation on the model according
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118797566A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118797566A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118797566A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QAWQYxaalCsrOzDZHc0A7s7S3ai4AW8tonkAFbvf3j_T7PPsWNnOTzAiLiBGCw0hDpkJ2gBjelaVILYkmWjLAE8aSMWakxkoe9WutoRoCqFUTANBk4-_Q6DPMlBxFbZ9F56YetBorLnNw6DeTa5o0u0GDnLlufTrbysKEpFKaKhQFqV1zzfbffbTVEc1v84X9EUTMk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Building cooling and heating load accurate prediction method based on double attention mechanisms and novel particle swarm optimization</title><source>esp@cenet</source><creator>LIU MINHUI ; SUN JIAN ; LIU DINGQUN ; YANG YONGPING ; CAI XIAOLONG ; DU XIAOZE ; SUN BINGRUI</creator><creatorcontrib>LIU MINHUI ; SUN JIAN ; LIU DINGQUN ; YANG YONGPING ; CAI XIAOLONG ; DU XIAOZE ; SUN BINGRUI</creatorcontrib><description>The invention relates to a building cooling and heating load accurate prediction method based on a double attention mechanism and a novel particle swarm algorithm, and belongs to the technical field of load prediction. The building cooling and heating load accurate prediction method comprises the steps that building historical cooling and heating load data and related external influence factor data are acquired, and the acquired data are preprocessed; establishing and training a BiLSTM (Bidirectional Long Short Term Memory) time sequence load prediction model according to the preprocessed data; introducing a double attention mechanism to carry out weight distribution on the input features and the hidden state of the neural network; performing hyper-parameter optimization on the load prediction model by using a novel particle swarm algorithm; establishing an error correction model by using a CEEMD decomposition technology and a BiLSTM neural network; and performing performance evaluation on the model according</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241018&amp;DB=EPODOC&amp;CC=CN&amp;NR=118797566A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241018&amp;DB=EPODOC&amp;CC=CN&amp;NR=118797566A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU MINHUI</creatorcontrib><creatorcontrib>SUN JIAN</creatorcontrib><creatorcontrib>LIU DINGQUN</creatorcontrib><creatorcontrib>YANG YONGPING</creatorcontrib><creatorcontrib>CAI XIAOLONG</creatorcontrib><creatorcontrib>DU XIAOZE</creatorcontrib><creatorcontrib>SUN BINGRUI</creatorcontrib><title>Building cooling and heating load accurate prediction method based on double attention mechanisms and novel particle swarm optimization</title><description>The invention relates to a building cooling and heating load accurate prediction method based on a double attention mechanism and a novel particle swarm algorithm, and belongs to the technical field of load prediction. The building cooling and heating load accurate prediction method comprises the steps that building historical cooling and heating load data and related external influence factor data are acquired, and the acquired data are preprocessed; establishing and training a BiLSTM (Bidirectional Long Short Term Memory) time sequence load prediction model according to the preprocessed data; introducing a double attention mechanism to carry out weight distribution on the input features and the hidden state of the neural network; performing hyper-parameter optimization on the load prediction model by using a novel particle swarm algorithm; establishing an error correction model by using a CEEMD decomposition technology and a BiLSTM neural network; and performing performance evaluation on the model according</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QAWQYxaalCsrOzDZHc0A7s7S3ai4AW8tonkAFbvf3j_T7PPsWNnOTzAiLiBGCw0hDpkJ2gBjelaVILYkmWjLAE8aSMWakxkoe9WutoRoCqFUTANBk4-_Q6DPMlBxFbZ9F56YetBorLnNw6DeTa5o0u0GDnLlufTrbysKEpFKaKhQFqV1zzfbffbTVEc1v84X9EUTMk</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>LIU MINHUI</creator><creator>SUN JIAN</creator><creator>LIU DINGQUN</creator><creator>YANG YONGPING</creator><creator>CAI XIAOLONG</creator><creator>DU XIAOZE</creator><creator>SUN BINGRUI</creator><scope>EVB</scope></search><sort><creationdate>20241018</creationdate><title>Building cooling and heating load accurate prediction method based on double attention mechanisms and novel particle swarm optimization</title><author>LIU MINHUI ; SUN JIAN ; LIU DINGQUN ; YANG YONGPING ; CAI XIAOLONG ; DU XIAOZE ; SUN BINGRUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118797566A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU MINHUI</creatorcontrib><creatorcontrib>SUN JIAN</creatorcontrib><creatorcontrib>LIU DINGQUN</creatorcontrib><creatorcontrib>YANG YONGPING</creatorcontrib><creatorcontrib>CAI XIAOLONG</creatorcontrib><creatorcontrib>DU XIAOZE</creatorcontrib><creatorcontrib>SUN BINGRUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU MINHUI</au><au>SUN JIAN</au><au>LIU DINGQUN</au><au>YANG YONGPING</au><au>CAI XIAOLONG</au><au>DU XIAOZE</au><au>SUN BINGRUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Building cooling and heating load accurate prediction method based on double attention mechanisms and novel particle swarm optimization</title><date>2024-10-18</date><risdate>2024</risdate><abstract>The invention relates to a building cooling and heating load accurate prediction method based on a double attention mechanism and a novel particle swarm algorithm, and belongs to the technical field of load prediction. The building cooling and heating load accurate prediction method comprises the steps that building historical cooling and heating load data and related external influence factor data are acquired, and the acquired data are preprocessed; establishing and training a BiLSTM (Bidirectional Long Short Term Memory) time sequence load prediction model according to the preprocessed data; introducing a double attention mechanism to carry out weight distribution on the input features and the hidden state of the neural network; performing hyper-parameter optimization on the load prediction model by using a novel particle swarm algorithm; establishing an error correction model by using a CEEMD decomposition technology and a BiLSTM neural network; and performing performance evaluation on the model according</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118797566A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Building cooling and heating load accurate prediction method based on double attention mechanisms and novel particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20MINHUI&rft.date=2024-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118797566A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true