Integrated attack method using non-systematic preprocessing and dynamic weight
The invention provides an integrated attack method using non-systematic preprocessing and dynamic weight. Comprising the following steps: 1, selecting an experimental data set, and determining a model; 2, performing input sample data enhancement; 3, generating an adversarial sample of the integrated...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PAN XUANHONG LIU PIN ZHANG YILONG YANG ZILEI GUAN QING CHEN HUARONG YANG HEXIN |
description | The invention provides an integrated attack method using non-systematic preprocessing and dynamic weight. Comprising the following steps: 1, selecting an experimental data set, and determining a model; 2, performing input sample data enhancement; 3, generating an adversarial sample of the integrated model through multi-model dynamic tuning integrated attacks; 4, according to a model weight rebalancing strategy, generating an optimized confrontation sample; step 5, circularly executing the step 3 to the step 4 until the set iteration threshold value is exceeded, and updating the adversarial sample; 6, ending the circulation, and outputting a confrontation sample generated by the final integrated model; and step 7, using the obtained confrontation attack sample to attack the target black box model, and calculating the success rate of the confrontation sample attack model. According to the method, the contribution of each agent model to the attack effect can be monitored and optimized, the migration capability o |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118711034A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118711034A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118711034A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQQNE0FqLeYTzAgmEFbWVRtNnKfhmSMRs0k5AZkb29Ih7A6hfvz01_YaVQUckDqqK7QyIds4enRA7AmRuZRCmhRgelUqnZkXwR2YOfGNNHXhTDqEszu-FDaPXrwqxPx2t3bqjkgaSgIyYdut7a_c7aTbs9tP88b28jNzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Integrated attack method using non-systematic preprocessing and dynamic weight</title><source>esp@cenet</source><creator>PAN XUANHONG ; LIU PIN ; ZHANG YILONG ; YANG ZILEI ; GUAN QING ; CHEN HUARONG ; YANG HEXIN</creator><creatorcontrib>PAN XUANHONG ; LIU PIN ; ZHANG YILONG ; YANG ZILEI ; GUAN QING ; CHEN HUARONG ; YANG HEXIN</creatorcontrib><description>The invention provides an integrated attack method using non-systematic preprocessing and dynamic weight. Comprising the following steps: 1, selecting an experimental data set, and determining a model; 2, performing input sample data enhancement; 3, generating an adversarial sample of the integrated model through multi-model dynamic tuning integrated attacks; 4, according to a model weight rebalancing strategy, generating an optimized confrontation sample; step 5, circularly executing the step 3 to the step 4 until the set iteration threshold value is exceeded, and updating the adversarial sample; 6, ending the circulation, and outputting a confrontation sample generated by the final integrated model; and step 7, using the obtained confrontation attack sample to attack the target black box model, and calculating the success rate of the confrontation sample attack model. According to the method, the contribution of each agent model to the attack effect can be monitored and optimized, the migration capability o</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240927&DB=EPODOC&CC=CN&NR=118711034A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240927&DB=EPODOC&CC=CN&NR=118711034A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PAN XUANHONG</creatorcontrib><creatorcontrib>LIU PIN</creatorcontrib><creatorcontrib>ZHANG YILONG</creatorcontrib><creatorcontrib>YANG ZILEI</creatorcontrib><creatorcontrib>GUAN QING</creatorcontrib><creatorcontrib>CHEN HUARONG</creatorcontrib><creatorcontrib>YANG HEXIN</creatorcontrib><title>Integrated attack method using non-systematic preprocessing and dynamic weight</title><description>The invention provides an integrated attack method using non-systematic preprocessing and dynamic weight. Comprising the following steps: 1, selecting an experimental data set, and determining a model; 2, performing input sample data enhancement; 3, generating an adversarial sample of the integrated model through multi-model dynamic tuning integrated attacks; 4, according to a model weight rebalancing strategy, generating an optimized confrontation sample; step 5, circularly executing the step 3 to the step 4 until the set iteration threshold value is exceeded, and updating the adversarial sample; 6, ending the circulation, and outputting a confrontation sample generated by the final integrated model; and step 7, using the obtained confrontation attack sample to attack the target black box model, and calculating the success rate of the confrontation sample attack model. According to the method, the contribution of each agent model to the attack effect can be monitored and optimized, the migration capability o</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQQNE0FqLeYTzAgmEFbWVRtNnKfhmSMRs0k5AZkb29Ih7A6hfvz01_YaVQUckDqqK7QyIds4enRA7AmRuZRCmhRgelUqnZkXwR2YOfGNNHXhTDqEszu-FDaPXrwqxPx2t3bqjkgaSgIyYdut7a_c7aTbs9tP88b28jNzE</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>PAN XUANHONG</creator><creator>LIU PIN</creator><creator>ZHANG YILONG</creator><creator>YANG ZILEI</creator><creator>GUAN QING</creator><creator>CHEN HUARONG</creator><creator>YANG HEXIN</creator><scope>EVB</scope></search><sort><creationdate>20240927</creationdate><title>Integrated attack method using non-systematic preprocessing and dynamic weight</title><author>PAN XUANHONG ; LIU PIN ; ZHANG YILONG ; YANG ZILEI ; GUAN QING ; CHEN HUARONG ; YANG HEXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118711034A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PAN XUANHONG</creatorcontrib><creatorcontrib>LIU PIN</creatorcontrib><creatorcontrib>ZHANG YILONG</creatorcontrib><creatorcontrib>YANG ZILEI</creatorcontrib><creatorcontrib>GUAN QING</creatorcontrib><creatorcontrib>CHEN HUARONG</creatorcontrib><creatorcontrib>YANG HEXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PAN XUANHONG</au><au>LIU PIN</au><au>ZHANG YILONG</au><au>YANG ZILEI</au><au>GUAN QING</au><au>CHEN HUARONG</au><au>YANG HEXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Integrated attack method using non-systematic preprocessing and dynamic weight</title><date>2024-09-27</date><risdate>2024</risdate><abstract>The invention provides an integrated attack method using non-systematic preprocessing and dynamic weight. Comprising the following steps: 1, selecting an experimental data set, and determining a model; 2, performing input sample data enhancement; 3, generating an adversarial sample of the integrated model through multi-model dynamic tuning integrated attacks; 4, according to a model weight rebalancing strategy, generating an optimized confrontation sample; step 5, circularly executing the step 3 to the step 4 until the set iteration threshold value is exceeded, and updating the adversarial sample; 6, ending the circulation, and outputting a confrontation sample generated by the final integrated model; and step 7, using the obtained confrontation attack sample to attack the target black box model, and calculating the success rate of the confrontation sample attack model. According to the method, the contribution of each agent model to the attack effect can be monitored and optimized, the migration capability o</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118711034A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Integrated attack method using non-systematic preprocessing and dynamic weight |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PAN%20XUANHONG&rft.date=2024-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118711034A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |