Method and device for constructing binary classification anomaly detection
The invention relates to the technical field of computer vision, in particular to a binary classification anomaly detection method and device.Firstly, an open data set is constructed, a binary classification two-way branch model architecture is designed, when the open data set is constructed, a clus...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU YI LI SHUSHENG DUAN JINGFENG LU ZEXING |
description | The invention relates to the technical field of computer vision, in particular to a binary classification anomaly detection method and device.Firstly, an open data set is constructed, a binary classification two-way branch model architecture is designed, when the open data set is constructed, a clustering algorithm is used for dividing all normal samples into even number groups which are not intersected with one another, and a binary classification two-way branch model architecture is designed; each group represents one mode of a normal picture, generating a pseudo abnormal sample, and increasing the diversity of abnormal samples; a binary classification double-path branch model architecture adopts a double-path structure and is divided into a basic branch and a correction branch, and the basic branch and the correction branch adopt different data enhancement modes to increase data distribution difference. Compared with the prior art, the method has the advantages that the model can be prevented from overfitt |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118711012A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118711012A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118711012A3</originalsourceid><addsrcrecordid>eNqNi0EKAjEMAHvxIOof4gMEqwe9yqKIoCfvS0xTDdRmaaOwv3cFH-BpYJgZu9OZ7aEBMAcI_BZiiFqANFcrLzLJd7hJxtIDJaxVohCaaB4OfWLqh8uYvmbqRhFT5dmPEzc_7K_NccGdtlw7JM5sbXPxfrvxfulXu_U_zQdVGjWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and device for constructing binary classification anomaly detection</title><source>esp@cenet</source><creator>LIU YI ; LI SHUSHENG ; DUAN JINGFENG ; LU ZEXING</creator><creatorcontrib>LIU YI ; LI SHUSHENG ; DUAN JINGFENG ; LU ZEXING</creatorcontrib><description>The invention relates to the technical field of computer vision, in particular to a binary classification anomaly detection method and device.Firstly, an open data set is constructed, a binary classification two-way branch model architecture is designed, when the open data set is constructed, a clustering algorithm is used for dividing all normal samples into even number groups which are not intersected with one another, and a binary classification two-way branch model architecture is designed; each group represents one mode of a normal picture, generating a pseudo abnormal sample, and increasing the diversity of abnormal samples; a binary classification double-path branch model architecture adopts a double-path structure and is divided into a basic branch and a correction branch, and the basic branch and the correction branch adopt different data enhancement modes to increase data distribution difference. Compared with the prior art, the method has the advantages that the model can be prevented from overfitt</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240927&DB=EPODOC&CC=CN&NR=118711012A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240927&DB=EPODOC&CC=CN&NR=118711012A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU YI</creatorcontrib><creatorcontrib>LI SHUSHENG</creatorcontrib><creatorcontrib>DUAN JINGFENG</creatorcontrib><creatorcontrib>LU ZEXING</creatorcontrib><title>Method and device for constructing binary classification anomaly detection</title><description>The invention relates to the technical field of computer vision, in particular to a binary classification anomaly detection method and device.Firstly, an open data set is constructed, a binary classification two-way branch model architecture is designed, when the open data set is constructed, a clustering algorithm is used for dividing all normal samples into even number groups which are not intersected with one another, and a binary classification two-way branch model architecture is designed; each group represents one mode of a normal picture, generating a pseudo abnormal sample, and increasing the diversity of abnormal samples; a binary classification double-path branch model architecture adopts a double-path structure and is divided into a basic branch and a correction branch, and the basic branch and the correction branch adopt different data enhancement modes to increase data distribution difference. Compared with the prior art, the method has the advantages that the model can be prevented from overfitt</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKAjEMAHvxIOof4gMEqwe9yqKIoCfvS0xTDdRmaaOwv3cFH-BpYJgZu9OZ7aEBMAcI_BZiiFqANFcrLzLJd7hJxtIDJaxVohCaaB4OfWLqh8uYvmbqRhFT5dmPEzc_7K_NccGdtlw7JM5sbXPxfrvxfulXu_U_zQdVGjWM</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>LIU YI</creator><creator>LI SHUSHENG</creator><creator>DUAN JINGFENG</creator><creator>LU ZEXING</creator><scope>EVB</scope></search><sort><creationdate>20240927</creationdate><title>Method and device for constructing binary classification anomaly detection</title><author>LIU YI ; LI SHUSHENG ; DUAN JINGFENG ; LU ZEXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118711012A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU YI</creatorcontrib><creatorcontrib>LI SHUSHENG</creatorcontrib><creatorcontrib>DUAN JINGFENG</creatorcontrib><creatorcontrib>LU ZEXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU YI</au><au>LI SHUSHENG</au><au>DUAN JINGFENG</au><au>LU ZEXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and device for constructing binary classification anomaly detection</title><date>2024-09-27</date><risdate>2024</risdate><abstract>The invention relates to the technical field of computer vision, in particular to a binary classification anomaly detection method and device.Firstly, an open data set is constructed, a binary classification two-way branch model architecture is designed, when the open data set is constructed, a clustering algorithm is used for dividing all normal samples into even number groups which are not intersected with one another, and a binary classification two-way branch model architecture is designed; each group represents one mode of a normal picture, generating a pseudo abnormal sample, and increasing the diversity of abnormal samples; a binary classification double-path branch model architecture adopts a double-path structure and is divided into a basic branch and a correction branch, and the basic branch and the correction branch adopt different data enhancement modes to increase data distribution difference. Compared with the prior art, the method has the advantages that the model can be prevented from overfitt</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118711012A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Method and device for constructing binary classification anomaly detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20YI&rft.date=2024-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118711012A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |