Lightweight image deblurring method based on improved Transform
The invention discloses a lightweight image deblurring method based on an improved Transform. The lightweight image deblurring method comprises the following steps: acquiring a blurred image; inputting the blurred image into a trained lightweight image deblurring model based on the improved Transfor...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG YUNTAO ZHANG LEQIAN LI YUJIAN |
description | The invention discloses a lightweight image deblurring method based on an improved Transform. The lightweight image deblurring method comprises the following steps: acquiring a blurred image; inputting the blurred image into a trained lightweight image deblurring model based on the improved Transform to obtain a clear deblurred image corresponding to the blurred image; wherein the lightweight image deblurring model based on the improved Transform comprises a coding module, an intermediate module and a decoding module, the coding module is composed of a dynamic convolution residual module, and the intermediate module and the decoding module are composed of a simple Transform module; due to the fact that the simple Transform module can obtain global information and position information in space and only needs calculation complexity close to linearity, the lightweight image deblurring method based on the improved Transform can obtain high-quality deblurred images in a very short time.
本发明公开了一种基于改进Transformer的轻量级 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118710538A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118710538A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118710538A3</originalsourceid><addsrcrecordid>eNrjZLD3yUzPKClPBZEKmbmJ6akKKalJOaVFRZl56Qq5qSUZ-SkKSYnFqSkK-XlABQVF-WVAdkhRYl5xWn5RLg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzS0MDc0MDW2cDQmRg0AtYAxOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight image deblurring method based on improved Transform</title><source>esp@cenet</source><creator>ZHANG YUNTAO ; ZHANG LEQIAN ; LI YUJIAN</creator><creatorcontrib>ZHANG YUNTAO ; ZHANG LEQIAN ; LI YUJIAN</creatorcontrib><description>The invention discloses a lightweight image deblurring method based on an improved Transform. The lightweight image deblurring method comprises the following steps: acquiring a blurred image; inputting the blurred image into a trained lightweight image deblurring model based on the improved Transform to obtain a clear deblurred image corresponding to the blurred image; wherein the lightweight image deblurring model based on the improved Transform comprises a coding module, an intermediate module and a decoding module, the coding module is composed of a dynamic convolution residual module, and the intermediate module and the decoding module are composed of a simple Transform module; due to the fact that the simple Transform module can obtain global information and position information in space and only needs calculation complexity close to linearity, the lightweight image deblurring method based on the improved Transform can obtain high-quality deblurred images in a very short time.
本发明公开了一种基于改进Transformer的轻量级</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240927&DB=EPODOC&CC=CN&NR=118710538A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240927&DB=EPODOC&CC=CN&NR=118710538A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YUNTAO</creatorcontrib><creatorcontrib>ZHANG LEQIAN</creatorcontrib><creatorcontrib>LI YUJIAN</creatorcontrib><title>Lightweight image deblurring method based on improved Transform</title><description>The invention discloses a lightweight image deblurring method based on an improved Transform. The lightweight image deblurring method comprises the following steps: acquiring a blurred image; inputting the blurred image into a trained lightweight image deblurring model based on the improved Transform to obtain a clear deblurred image corresponding to the blurred image; wherein the lightweight image deblurring model based on the improved Transform comprises a coding module, an intermediate module and a decoding module, the coding module is composed of a dynamic convolution residual module, and the intermediate module and the decoding module are composed of a simple Transform module; due to the fact that the simple Transform module can obtain global information and position information in space and only needs calculation complexity close to linearity, the lightweight image deblurring method based on the improved Transform can obtain high-quality deblurred images in a very short time.
本发明公开了一种基于改进Transformer的轻量级</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD3yUzPKClPBZEKmbmJ6akKKalJOaVFRZl56Qq5qSUZ-SkKSYnFqSkK-XlABQVF-WVAdkhRYl5xWn5RLg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzS0MDc0MDW2cDQmRg0AtYAxOg</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>ZHANG YUNTAO</creator><creator>ZHANG LEQIAN</creator><creator>LI YUJIAN</creator><scope>EVB</scope></search><sort><creationdate>20240927</creationdate><title>Lightweight image deblurring method based on improved Transform</title><author>ZHANG YUNTAO ; ZHANG LEQIAN ; LI YUJIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118710538A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YUNTAO</creatorcontrib><creatorcontrib>ZHANG LEQIAN</creatorcontrib><creatorcontrib>LI YUJIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YUNTAO</au><au>ZHANG LEQIAN</au><au>LI YUJIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight image deblurring method based on improved Transform</title><date>2024-09-27</date><risdate>2024</risdate><abstract>The invention discloses a lightweight image deblurring method based on an improved Transform. The lightweight image deblurring method comprises the following steps: acquiring a blurred image; inputting the blurred image into a trained lightweight image deblurring model based on the improved Transform to obtain a clear deblurred image corresponding to the blurred image; wherein the lightweight image deblurring model based on the improved Transform comprises a coding module, an intermediate module and a decoding module, the coding module is composed of a dynamic convolution residual module, and the intermediate module and the decoding module are composed of a simple Transform module; due to the fact that the simple Transform module can obtain global information and position information in space and only needs calculation complexity close to linearity, the lightweight image deblurring method based on the improved Transform can obtain high-quality deblurred images in a very short time.
本发明公开了一种基于改进Transformer的轻量级</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118710538A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Lightweight image deblurring method based on improved Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YUNTAO&rft.date=2024-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118710538A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |