Aero-engine combustion regulation system anomaly detection method and system based on multivariate time sequence regression model

The invention relates to the technical field of fuel oil regulation detection, in particular to an aero-engine fuel oil regulation system anomaly detection method and system based on a multivariate time sequence regression model, and the method comprises the steps: obtaining dimension data correspon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG YUZE, XU ZHANYAN, LIU RAN, WANG QI, ZHU YE, GUO CHANGXING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG YUZE
XU ZHANYAN
LIU RAN
WANG QI
ZHU YE
GUO CHANGXING
description The invention relates to the technical field of fuel oil regulation detection, in particular to an aero-engine fuel oil regulation system anomaly detection method and system based on a multivariate time sequence regression model, and the method comprises the steps: obtaining dimension data corresponding to a plurality of monitoring units during the operation of an aero-engine fuel oil regulation system; acquiring an encoder in the VAE network as a long time sequence feature extractor of the overall multivariate time sequence regression model; acquiring long time sequence characteristics; obtaining a trained multivariate time sequence regression model; obtaining a regression prediction result of the key feature dimension of the combustion regulation system at each moment; and judging the abnormity of the to-be-detected data according to the regression prediction result of the key feature dimension of the combustion regulation system at each moment. According to the method, the encoder in the VAE network is com
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118709104A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118709104A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118709104A3</originalsourceid><addsrcrecordid>eNqNjL0KwjAYRbs4iPoO8QEKLQrqWIri5ORe0uRaA_mp-b4IHX1zbdHd6V44hzPPXhViyOE74yFUcG0iNsGLiC5ZOV0aiOGE9MFJOwgNhpqAA9-D_gD9c1pJ0GJEybJ5ymgkQ7BxEIRHglcYyxFEUyBo2GU2u0lLWH13ka1Px2t9ztGHBtRLBQ9u6ktZ7nfFoSy21eYf5w1O9kro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Aero-engine combustion regulation system anomaly detection method and system based on multivariate time sequence regression model</title><source>esp@cenet</source><creator>WANG YUZE ; XU ZHANYAN ; LIU RAN ; WANG QI ; ZHU YE ; GUO CHANGXING</creator><creatorcontrib>WANG YUZE ; XU ZHANYAN ; LIU RAN ; WANG QI ; ZHU YE ; GUO CHANGXING</creatorcontrib><description>The invention relates to the technical field of fuel oil regulation detection, in particular to an aero-engine fuel oil regulation system anomaly detection method and system based on a multivariate time sequence regression model, and the method comprises the steps: obtaining dimension data corresponding to a plurality of monitoring units during the operation of an aero-engine fuel oil regulation system; acquiring an encoder in the VAE network as a long time sequence feature extractor of the overall multivariate time sequence regression model; acquiring long time sequence characteristics; obtaining a trained multivariate time sequence regression model; obtaining a regression prediction result of the key feature dimension of the combustion regulation system at each moment; and judging the abnormity of the to-be-detected data according to the regression prediction result of the key feature dimension of the combustion regulation system at each moment. According to the method, the encoder in the VAE network is com</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240927&amp;DB=EPODOC&amp;CC=CN&amp;NR=118709104A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240927&amp;DB=EPODOC&amp;CC=CN&amp;NR=118709104A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YUZE</creatorcontrib><creatorcontrib>XU ZHANYAN</creatorcontrib><creatorcontrib>LIU RAN</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>ZHU YE</creatorcontrib><creatorcontrib>GUO CHANGXING</creatorcontrib><title>Aero-engine combustion regulation system anomaly detection method and system based on multivariate time sequence regression model</title><description>The invention relates to the technical field of fuel oil regulation detection, in particular to an aero-engine fuel oil regulation system anomaly detection method and system based on a multivariate time sequence regression model, and the method comprises the steps: obtaining dimension data corresponding to a plurality of monitoring units during the operation of an aero-engine fuel oil regulation system; acquiring an encoder in the VAE network as a long time sequence feature extractor of the overall multivariate time sequence regression model; acquiring long time sequence characteristics; obtaining a trained multivariate time sequence regression model; obtaining a regression prediction result of the key feature dimension of the combustion regulation system at each moment; and judging the abnormity of the to-be-detected data according to the regression prediction result of the key feature dimension of the combustion regulation system at each moment. According to the method, the encoder in the VAE network is com</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0KwjAYRbs4iPoO8QEKLQrqWIri5ORe0uRaA_mp-b4IHX1zbdHd6V44hzPPXhViyOE74yFUcG0iNsGLiC5ZOV0aiOGE9MFJOwgNhpqAA9-D_gD9c1pJ0GJEybJ5ymgkQ7BxEIRHglcYyxFEUyBo2GU2u0lLWH13ka1Px2t9ztGHBtRLBQ9u6ktZ7nfFoSy21eYf5w1O9kro</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>WANG YUZE</creator><creator>XU ZHANYAN</creator><creator>LIU RAN</creator><creator>WANG QI</creator><creator>ZHU YE</creator><creator>GUO CHANGXING</creator><scope>EVB</scope></search><sort><creationdate>20240927</creationdate><title>Aero-engine combustion regulation system anomaly detection method and system based on multivariate time sequence regression model</title><author>WANG YUZE ; XU ZHANYAN ; LIU RAN ; WANG QI ; ZHU YE ; GUO CHANGXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118709104A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YUZE</creatorcontrib><creatorcontrib>XU ZHANYAN</creatorcontrib><creatorcontrib>LIU RAN</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>ZHU YE</creatorcontrib><creatorcontrib>GUO CHANGXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YUZE</au><au>XU ZHANYAN</au><au>LIU RAN</au><au>WANG QI</au><au>ZHU YE</au><au>GUO CHANGXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Aero-engine combustion regulation system anomaly detection method and system based on multivariate time sequence regression model</title><date>2024-09-27</date><risdate>2024</risdate><abstract>The invention relates to the technical field of fuel oil regulation detection, in particular to an aero-engine fuel oil regulation system anomaly detection method and system based on a multivariate time sequence regression model, and the method comprises the steps: obtaining dimension data corresponding to a plurality of monitoring units during the operation of an aero-engine fuel oil regulation system; acquiring an encoder in the VAE network as a long time sequence feature extractor of the overall multivariate time sequence regression model; acquiring long time sequence characteristics; obtaining a trained multivariate time sequence regression model; obtaining a regression prediction result of the key feature dimension of the combustion regulation system at each moment; and judging the abnormity of the to-be-detected data according to the regression prediction result of the key feature dimension of the combustion regulation system at each moment. According to the method, the encoder in the VAE network is com</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118709104A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Aero-engine combustion regulation system anomaly detection method and system based on multivariate time sequence regression model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YUZE&rft.date=2024-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118709104A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true