Reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis

The invention discloses a reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis, which comprises the following steps of: extracting same static water level sample values from a preliminary screening database for grouping, and extracting osmotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHU XIAOLEI, WANG MINGMING, SONG XINJIANG, LIU HUAILI, WANG YAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHU XIAOLEI
WANG MINGMING
SONG XINJIANG
LIU HUAILI
WANG YAN
description The invention discloses a reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis, which comprises the following steps of: extracting same static water level sample values from a preliminary screening database for grouping, and extracting osmotic pressure values corresponding to water levels of all reservoirs at the same time; preliminarily judging and eliminating logic error data; outlier osmotic pressure data under all water levels are eliminated through a box plot method, and the reliability of the data is ensured; determining a clustering center of seepage pressure data under each water level, and capturing a theoretical reservoir dam seepage pressure value under the target static water level sample value; calculating and drawing a prediction interval of the regression model; and through comparative analysis of the osmotic pressure data and the prediction interval, when the osmotic pressure data exceed the prediction interval, a warning message is autom
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118709003A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118709003A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118709003A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAURNNYiHqH7wGEhBRqKUGxshD78N0d48Jmf9i_Eby9G_EAVsN7M8y88Fco4ktcJMs9ifaSnKEhQnWMyDJxJjGZXeiIgyXruAvyxR7pKZburLAkgYwfNSFOVUQ3nbhsObB_q9NlMXuwV6x-uSjWp-OtOW8wSAsd2CAgtc2lqnbbcl-W9aH-Z_MBqKdCxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis</title><source>esp@cenet</source><creator>ZHU XIAOLEI ; WANG MINGMING ; SONG XINJIANG ; LIU HUAILI ; WANG YAN</creator><creatorcontrib>ZHU XIAOLEI ; WANG MINGMING ; SONG XINJIANG ; LIU HUAILI ; WANG YAN</creatorcontrib><description>The invention discloses a reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis, which comprises the following steps of: extracting same static water level sample values from a preliminary screening database for grouping, and extracting osmotic pressure values corresponding to water levels of all reservoirs at the same time; preliminarily judging and eliminating logic error data; outlier osmotic pressure data under all water levels are eliminated through a box plot method, and the reliability of the data is ensured; determining a clustering center of seepage pressure data under each water level, and capturing a theoretical reservoir dam seepage pressure value under the target static water level sample value; calculating and drawing a prediction interval of the regression model; and through comparative analysis of the osmotic pressure data and the prediction interval, when the osmotic pressure data exceed the prediction interval, a warning message is autom</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240927&amp;DB=EPODOC&amp;CC=CN&amp;NR=118709003A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240927&amp;DB=EPODOC&amp;CC=CN&amp;NR=118709003A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHU XIAOLEI</creatorcontrib><creatorcontrib>WANG MINGMING</creatorcontrib><creatorcontrib>SONG XINJIANG</creatorcontrib><creatorcontrib>LIU HUAILI</creatorcontrib><creatorcontrib>WANG YAN</creatorcontrib><title>Reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis</title><description>The invention discloses a reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis, which comprises the following steps of: extracting same static water level sample values from a preliminary screening database for grouping, and extracting osmotic pressure values corresponding to water levels of all reservoirs at the same time; preliminarily judging and eliminating logic error data; outlier osmotic pressure data under all water levels are eliminated through a box plot method, and the reliability of the data is ensured; determining a clustering center of seepage pressure data under each water level, and capturing a theoretical reservoir dam seepage pressure value under the target static water level sample value; calculating and drawing a prediction interval of the regression model; and through comparative analysis of the osmotic pressure data and the prediction interval, when the osmotic pressure data exceed the prediction interval, a warning message is autom</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAURNNYiHqH7wGEhBRqKUGxshD78N0d48Jmf9i_Eby9G_EAVsN7M8y88Fco4ktcJMs9ifaSnKEhQnWMyDJxJjGZXeiIgyXruAvyxR7pKZburLAkgYwfNSFOVUQ3nbhsObB_q9NlMXuwV6x-uSjWp-OtOW8wSAsd2CAgtc2lqnbbcl-W9aH-Z_MBqKdCxg</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>ZHU XIAOLEI</creator><creator>WANG MINGMING</creator><creator>SONG XINJIANG</creator><creator>LIU HUAILI</creator><creator>WANG YAN</creator><scope>EVB</scope></search><sort><creationdate>20240927</creationdate><title>Reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis</title><author>ZHU XIAOLEI ; WANG MINGMING ; SONG XINJIANG ; LIU HUAILI ; WANG YAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118709003A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHU XIAOLEI</creatorcontrib><creatorcontrib>WANG MINGMING</creatorcontrib><creatorcontrib>SONG XINJIANG</creatorcontrib><creatorcontrib>LIU HUAILI</creatorcontrib><creatorcontrib>WANG YAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHU XIAOLEI</au><au>WANG MINGMING</au><au>SONG XINJIANG</au><au>LIU HUAILI</au><au>WANG YAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis</title><date>2024-09-27</date><risdate>2024</risdate><abstract>The invention discloses a reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis, which comprises the following steps of: extracting same static water level sample values from a preliminary screening database for grouping, and extracting osmotic pressure values corresponding to water levels of all reservoirs at the same time; preliminarily judging and eliminating logic error data; outlier osmotic pressure data under all water levels are eliminated through a box plot method, and the reliability of the data is ensured; determining a clustering center of seepage pressure data under each water level, and capturing a theoretical reservoir dam seepage pressure value under the target static water level sample value; calculating and drawing a prediction interval of the regression model; and through comparative analysis of the osmotic pressure data and the prediction interval, when the osmotic pressure data exceed the prediction interval, a warning message is autom</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118709003A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Reservoir dam osmotic pressure data processing and diagnosing method based on clustering regression analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHU%20XIAOLEI&rft.date=2024-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118709003A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true