Lightweight smoke identification method based on spatial-temporal feature fusion

The invention discloses a lightweight smoke identification method based on spatial-temporal feature fusion, and the method comprises the steps: firstly constructing a lightweight deep learning network (TSNet) of spatial-temporal feature fusion, and the network comprises a shallow spatial feature ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PU JIANFEI, JIANG HAOWEN, WEI WEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PU JIANFEI
JIANG HAOWEN
WEI WEI
description The invention discloses a lightweight smoke identification method based on spatial-temporal feature fusion, and the method comprises the steps: firstly constructing a lightweight deep learning network (TSNet) of spatial-temporal feature fusion, and the network comprises a shallow spatial feature extraction module and a spatial-temporal feature extraction module; and on the basis of the network, a lightweight smoke identification model based on spatial-temporal feature fusion is constructed. In the model, firstly, a shallow spatial feature extraction module in the TSNet is utilized to extract local spatial features of a single-frame picture, the local spatial features are abstracted, and the resolution of a feature map is reduced step by step; the method comprises the following steps: respectively extracting time sequence features among multiple frames of smoke pictures and deep abstract features of a single frame of smoke picture by using improved probsparse self-attention through a time-space feature extract
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118692001A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118692001A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118692001A3</originalsourceid><addsrcrecordid>eNrjZAjwyUzPKClPBZEKxbn52akKmSmpeSWZaZnJiSWZ-XkKuaklGfkpCkmJxakpCkB-cQFQPDFHtyQ1tyC_KDFHIS01saS0KFUhrbQYqJ6HgTUtMac4lRdKczMourmGOHvophbkx6cCNSen5qWWxDv7GRpamFkaGRgYOhoTowYA8Ss39A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight smoke identification method based on spatial-temporal feature fusion</title><source>esp@cenet</source><creator>PU JIANFEI ; JIANG HAOWEN ; WEI WEI</creator><creatorcontrib>PU JIANFEI ; JIANG HAOWEN ; WEI WEI</creatorcontrib><description>The invention discloses a lightweight smoke identification method based on spatial-temporal feature fusion, and the method comprises the steps: firstly constructing a lightweight deep learning network (TSNet) of spatial-temporal feature fusion, and the network comprises a shallow spatial feature extraction module and a spatial-temporal feature extraction module; and on the basis of the network, a lightweight smoke identification model based on spatial-temporal feature fusion is constructed. In the model, firstly, a shallow spatial feature extraction module in the TSNet is utilized to extract local spatial features of a single-frame picture, the local spatial features are abstracted, and the resolution of a feature map is reduced step by step; the method comprises the following steps: respectively extracting time sequence features among multiple frames of smoke pictures and deep abstract features of a single frame of smoke picture by using improved probsparse self-attention through a time-space feature extract</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118692001A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118692001A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PU JIANFEI</creatorcontrib><creatorcontrib>JIANG HAOWEN</creatorcontrib><creatorcontrib>WEI WEI</creatorcontrib><title>Lightweight smoke identification method based on spatial-temporal feature fusion</title><description>The invention discloses a lightweight smoke identification method based on spatial-temporal feature fusion, and the method comprises the steps: firstly constructing a lightweight deep learning network (TSNet) of spatial-temporal feature fusion, and the network comprises a shallow spatial feature extraction module and a spatial-temporal feature extraction module; and on the basis of the network, a lightweight smoke identification model based on spatial-temporal feature fusion is constructed. In the model, firstly, a shallow spatial feature extraction module in the TSNet is utilized to extract local spatial features of a single-frame picture, the local spatial features are abstracted, and the resolution of a feature map is reduced step by step; the method comprises the following steps: respectively extracting time sequence features among multiple frames of smoke pictures and deep abstract features of a single frame of smoke picture by using improved probsparse self-attention through a time-space feature extract</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwyUzPKClPBZEKxbn52akKmSmpeSWZaZnJiSWZ-XkKuaklGfkpCkmJxakpCkB-cQFQPDFHtyQ1tyC_KDFHIS01saS0KFUhrbQYqJ6HgTUtMac4lRdKczMourmGOHvophbkx6cCNSen5qWWxDv7GRpamFkaGRgYOhoTowYA8Ss39A</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>PU JIANFEI</creator><creator>JIANG HAOWEN</creator><creator>WEI WEI</creator><scope>EVB</scope></search><sort><creationdate>20240924</creationdate><title>Lightweight smoke identification method based on spatial-temporal feature fusion</title><author>PU JIANFEI ; JIANG HAOWEN ; WEI WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118692001A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PU JIANFEI</creatorcontrib><creatorcontrib>JIANG HAOWEN</creatorcontrib><creatorcontrib>WEI WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PU JIANFEI</au><au>JIANG HAOWEN</au><au>WEI WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight smoke identification method based on spatial-temporal feature fusion</title><date>2024-09-24</date><risdate>2024</risdate><abstract>The invention discloses a lightweight smoke identification method based on spatial-temporal feature fusion, and the method comprises the steps: firstly constructing a lightweight deep learning network (TSNet) of spatial-temporal feature fusion, and the network comprises a shallow spatial feature extraction module and a spatial-temporal feature extraction module; and on the basis of the network, a lightweight smoke identification model based on spatial-temporal feature fusion is constructed. In the model, firstly, a shallow spatial feature extraction module in the TSNet is utilized to extract local spatial features of a single-frame picture, the local spatial features are abstracted, and the resolution of a feature map is reduced step by step; the method comprises the following steps: respectively extracting time sequence features among multiple frames of smoke pictures and deep abstract features of a single frame of smoke picture by using improved probsparse self-attention through a time-space feature extract</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118692001A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Lightweight smoke identification method based on spatial-temporal feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PU%20JIANFEI&rft.date=2024-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118692001A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true