River water quality prediction method and system based on machine learning

The invention discloses a river water quality prediction method and system based on machine learning, and belongs to the technical field of river intelligent management, and the method comprises the steps of data preparation, data preprocessing, river water quality prediction model construction, opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO HONGQIAO, ZHANG GUOXING, LIU HUIFEN, YANG JING, LI XIAO, ZHANG NAN, CHEN TONGTONG, ZHANG JING, HAO RONGAN, SUN LEI, ZHANG PENG, JI KAIYAO, LIU CHONG, WU XIANBIN, WANG XIAOYI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO HONGQIAO
ZHANG GUOXING
LIU HUIFEN
YANG JING
LI XIAO
ZHANG NAN
CHEN TONGTONG
ZHANG JING
HAO RONGAN
SUN LEI
ZHANG PENG
JI KAIYAO
LIU CHONG
WU XIANBIN
WANG XIAOYI
description The invention discloses a river water quality prediction method and system based on machine learning, and belongs to the technical field of river intelligent management, and the method comprises the steps of data preparation, data preprocessing, river water quality prediction model construction, optimal river water quality prediction design and river water quality prediction. According to the method, the river water quality prediction model is constructed by adopting the depth time convolution random forest model, the time dependence is more effectively captured, the modeling capability for a nonlinear relationship is enhanced, different time scale characteristics can be better extracted through the multilayer expansion convolution, the model prediction precision and robustness are improved through the random forest subnet, and the method is more suitable for being applied to the field of river water quality prediction. The reliability of river water quality prediction is enhanced; the improved tiger whale hu
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118690670A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118690670A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118690670A3</originalsourceid><addsrcrecordid>eNrjZPAKyixLLVIoTywBkoWliTmZJZUKBUWpKZnJJZn5eQq5qSUZ-SkKiXkpCsWVxSWpuQpJicWpKQogqcTkjMy8VIWc1MSivMy8dB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hoYWZpYGZu4GhMjBoAOYs1PA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>River water quality prediction method and system based on machine learning</title><source>esp@cenet</source><creator>ZHAO HONGQIAO ; ZHANG GUOXING ; LIU HUIFEN ; YANG JING ; LI XIAO ; ZHANG NAN ; CHEN TONGTONG ; ZHANG JING ; HAO RONGAN ; SUN LEI ; ZHANG PENG ; JI KAIYAO ; LIU CHONG ; WU XIANBIN ; WANG XIAOYI</creator><creatorcontrib>ZHAO HONGQIAO ; ZHANG GUOXING ; LIU HUIFEN ; YANG JING ; LI XIAO ; ZHANG NAN ; CHEN TONGTONG ; ZHANG JING ; HAO RONGAN ; SUN LEI ; ZHANG PENG ; JI KAIYAO ; LIU CHONG ; WU XIANBIN ; WANG XIAOYI</creatorcontrib><description>The invention discloses a river water quality prediction method and system based on machine learning, and belongs to the technical field of river intelligent management, and the method comprises the steps of data preparation, data preprocessing, river water quality prediction model construction, optimal river water quality prediction design and river water quality prediction. According to the method, the river water quality prediction model is constructed by adopting the depth time convolution random forest model, the time dependence is more effectively captured, the modeling capability for a nonlinear relationship is enhanced, different time scale characteristics can be better extracted through the multilayer expansion convolution, the model prediction precision and robustness are improved through the random forest subnet, and the method is more suitable for being applied to the field of river water quality prediction. The reliability of river water quality prediction is enhanced; the improved tiger whale hu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118690670A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118690670A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO HONGQIAO</creatorcontrib><creatorcontrib>ZHANG GUOXING</creatorcontrib><creatorcontrib>LIU HUIFEN</creatorcontrib><creatorcontrib>YANG JING</creatorcontrib><creatorcontrib>LI XIAO</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><creatorcontrib>CHEN TONGTONG</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><creatorcontrib>HAO RONGAN</creatorcontrib><creatorcontrib>SUN LEI</creatorcontrib><creatorcontrib>ZHANG PENG</creatorcontrib><creatorcontrib>JI KAIYAO</creatorcontrib><creatorcontrib>LIU CHONG</creatorcontrib><creatorcontrib>WU XIANBIN</creatorcontrib><creatorcontrib>WANG XIAOYI</creatorcontrib><title>River water quality prediction method and system based on machine learning</title><description>The invention discloses a river water quality prediction method and system based on machine learning, and belongs to the technical field of river intelligent management, and the method comprises the steps of data preparation, data preprocessing, river water quality prediction model construction, optimal river water quality prediction design and river water quality prediction. According to the method, the river water quality prediction model is constructed by adopting the depth time convolution random forest model, the time dependence is more effectively captured, the modeling capability for a nonlinear relationship is enhanced, different time scale characteristics can be better extracted through the multilayer expansion convolution, the model prediction precision and robustness are improved through the random forest subnet, and the method is more suitable for being applied to the field of river water quality prediction. The reliability of river water quality prediction is enhanced; the improved tiger whale hu</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAKyixLLVIoTywBkoWliTmZJZUKBUWpKZnJJZn5eQq5qSUZ-SkKiXkpCsWVxSWpuQpJicWpKQogqcTkjMy8VIWc1MSivMy8dB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hoYWZpYGZu4GhMjBoAOYs1PA</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>ZHAO HONGQIAO</creator><creator>ZHANG GUOXING</creator><creator>LIU HUIFEN</creator><creator>YANG JING</creator><creator>LI XIAO</creator><creator>ZHANG NAN</creator><creator>CHEN TONGTONG</creator><creator>ZHANG JING</creator><creator>HAO RONGAN</creator><creator>SUN LEI</creator><creator>ZHANG PENG</creator><creator>JI KAIYAO</creator><creator>LIU CHONG</creator><creator>WU XIANBIN</creator><creator>WANG XIAOYI</creator><scope>EVB</scope></search><sort><creationdate>20240924</creationdate><title>River water quality prediction method and system based on machine learning</title><author>ZHAO HONGQIAO ; ZHANG GUOXING ; LIU HUIFEN ; YANG JING ; LI XIAO ; ZHANG NAN ; CHEN TONGTONG ; ZHANG JING ; HAO RONGAN ; SUN LEI ; ZHANG PENG ; JI KAIYAO ; LIU CHONG ; WU XIANBIN ; WANG XIAOYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118690670A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO HONGQIAO</creatorcontrib><creatorcontrib>ZHANG GUOXING</creatorcontrib><creatorcontrib>LIU HUIFEN</creatorcontrib><creatorcontrib>YANG JING</creatorcontrib><creatorcontrib>LI XIAO</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><creatorcontrib>CHEN TONGTONG</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><creatorcontrib>HAO RONGAN</creatorcontrib><creatorcontrib>SUN LEI</creatorcontrib><creatorcontrib>ZHANG PENG</creatorcontrib><creatorcontrib>JI KAIYAO</creatorcontrib><creatorcontrib>LIU CHONG</creatorcontrib><creatorcontrib>WU XIANBIN</creatorcontrib><creatorcontrib>WANG XIAOYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO HONGQIAO</au><au>ZHANG GUOXING</au><au>LIU HUIFEN</au><au>YANG JING</au><au>LI XIAO</au><au>ZHANG NAN</au><au>CHEN TONGTONG</au><au>ZHANG JING</au><au>HAO RONGAN</au><au>SUN LEI</au><au>ZHANG PENG</au><au>JI KAIYAO</au><au>LIU CHONG</au><au>WU XIANBIN</au><au>WANG XIAOYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>River water quality prediction method and system based on machine learning</title><date>2024-09-24</date><risdate>2024</risdate><abstract>The invention discloses a river water quality prediction method and system based on machine learning, and belongs to the technical field of river intelligent management, and the method comprises the steps of data preparation, data preprocessing, river water quality prediction model construction, optimal river water quality prediction design and river water quality prediction. According to the method, the river water quality prediction model is constructed by adopting the depth time convolution random forest model, the time dependence is more effectively captured, the modeling capability for a nonlinear relationship is enhanced, different time scale characteristics can be better extracted through the multilayer expansion convolution, the model prediction precision and robustness are improved through the random forest subnet, and the method is more suitable for being applied to the field of river water quality prediction. The reliability of river water quality prediction is enhanced; the improved tiger whale hu</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118690670A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TESTING
title River water quality prediction method and system based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20HONGQIAO&rft.date=2024-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118690670A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true