Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning

The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YICHAO, MENG DEKAI, LEE, SUK JIN, ZHAO GONGQING, ZHOU BIN, DONG GUOYUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG YICHAO
MENG DEKAI
LEE, SUK JIN
ZHAO GONGQING
ZHOU BIN
DONG GUOYUN
description The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118690160A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118690160A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118690160A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAHvxIOof1gcILULRYylKT568lzXdtgvJJnRTML7eHHyAp2FgYLYFd4QRdA3BJiChZcoYRzZMYhL4ENnxByN7AVzfbBmXBChok7KCozj7IfsAmjSSgxcqDZBrh2ZmIbCEi7BM-2IzolU6_Lgrjvfbs-1OFHxPGtDkfezbR1Vd6mtZ1WVz_qf5AsfdQXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><source>esp@cenet</source><creator>ZHANG YICHAO ; MENG DEKAI ; LEE, SUK JIN ; ZHAO GONGQING ; ZHOU BIN ; DONG GUOYUN</creator><creatorcontrib>ZHANG YICHAO ; MENG DEKAI ; LEE, SUK JIN ; ZHAO GONGQING ; ZHOU BIN ; DONG GUOYUN</creatorcontrib><description>The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118690160A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118690160A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YICHAO</creatorcontrib><creatorcontrib>MENG DEKAI</creatorcontrib><creatorcontrib>LEE, SUK JIN</creatorcontrib><creatorcontrib>ZHAO GONGQING</creatorcontrib><creatorcontrib>ZHOU BIN</creatorcontrib><creatorcontrib>DONG GUOYUN</creatorcontrib><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><description>The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQAHvxIOof1gcILULRYylKT568lzXdtgvJJnRTML7eHHyAp2FgYLYFd4QRdA3BJiChZcoYRzZMYhL4ENnxByN7AVzfbBmXBChok7KCozj7IfsAmjSSgxcqDZBrh2ZmIbCEi7BM-2IzolU6_Lgrjvfbs-1OFHxPGtDkfezbR1Vd6mtZ1WVz_qf5AsfdQXs</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>ZHANG YICHAO</creator><creator>MENG DEKAI</creator><creator>LEE, SUK JIN</creator><creator>ZHAO GONGQING</creator><creator>ZHOU BIN</creator><creator>DONG GUOYUN</creator><scope>EVB</scope></search><sort><creationdate>20240924</creationdate><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><author>ZHANG YICHAO ; MENG DEKAI ; LEE, SUK JIN ; ZHAO GONGQING ; ZHOU BIN ; DONG GUOYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118690160A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YICHAO</creatorcontrib><creatorcontrib>MENG DEKAI</creatorcontrib><creatorcontrib>LEE, SUK JIN</creatorcontrib><creatorcontrib>ZHAO GONGQING</creatorcontrib><creatorcontrib>ZHOU BIN</creatorcontrib><creatorcontrib>DONG GUOYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YICHAO</au><au>MENG DEKAI</au><au>LEE, SUK JIN</au><au>ZHAO GONGQING</au><au>ZHOU BIN</au><au>DONG GUOYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><date>2024-09-24</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118690160A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YICHAO&rft.date=2024-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118690160A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true