Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning
The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and co...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG YICHAO MENG DEKAI LEE, SUK JIN ZHAO GONGQING ZHOU BIN DONG GUOYUN |
description | The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118690160A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118690160A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118690160A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAHvxIOof1gcILULRYylKT568lzXdtgvJJnRTML7eHHyAp2FgYLYFd4QRdA3BJiChZcoYRzZMYhL4ENnxByN7AVzfbBmXBChok7KCozj7IfsAmjSSgxcqDZBrh2ZmIbCEi7BM-2IzolU6_Lgrjvfbs-1OFHxPGtDkfezbR1Vd6mtZ1WVz_qf5AsfdQXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><source>esp@cenet</source><creator>ZHANG YICHAO ; MENG DEKAI ; LEE, SUK JIN ; ZHAO GONGQING ; ZHOU BIN ; DONG GUOYUN</creator><creatorcontrib>ZHANG YICHAO ; MENG DEKAI ; LEE, SUK JIN ; ZHAO GONGQING ; ZHOU BIN ; DONG GUOYUN</creatorcontrib><description>The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240924&DB=EPODOC&CC=CN&NR=118690160A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240924&DB=EPODOC&CC=CN&NR=118690160A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YICHAO</creatorcontrib><creatorcontrib>MENG DEKAI</creatorcontrib><creatorcontrib>LEE, SUK JIN</creatorcontrib><creatorcontrib>ZHAO GONGQING</creatorcontrib><creatorcontrib>ZHOU BIN</creatorcontrib><creatorcontrib>DONG GUOYUN</creatorcontrib><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><description>The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQAHvxIOof1gcILULRYylKT568lzXdtgvJJnRTML7eHHyAp2FgYLYFd4QRdA3BJiChZcoYRzZMYhL4ENnxByN7AVzfbBmXBChok7KCozj7IfsAmjSSgxcqDZBrh2ZmIbCEi7BM-2IzolU6_Lgrjvfbs-1OFHxPGtDkfezbR1Vd6mtZ1WVz_qf5AsfdQXs</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>ZHANG YICHAO</creator><creator>MENG DEKAI</creator><creator>LEE, SUK JIN</creator><creator>ZHAO GONGQING</creator><creator>ZHOU BIN</creator><creator>DONG GUOYUN</creator><scope>EVB</scope></search><sort><creationdate>20240924</creationdate><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><author>ZHANG YICHAO ; MENG DEKAI ; LEE, SUK JIN ; ZHAO GONGQING ; ZHOU BIN ; DONG GUOYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118690160A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YICHAO</creatorcontrib><creatorcontrib>MENG DEKAI</creatorcontrib><creatorcontrib>LEE, SUK JIN</creatorcontrib><creatorcontrib>ZHAO GONGQING</creatorcontrib><creatorcontrib>ZHOU BIN</creatorcontrib><creatorcontrib>DONG GUOYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YICHAO</au><au>MENG DEKAI</au><au>LEE, SUK JIN</au><au>ZHAO GONGQING</au><au>ZHOU BIN</au><au>DONG GUOYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning</title><date>2024-09-24</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning, and the method comprises the steps: firstly, training two machine learning networks through analyzing the operation track, scheduling knowledge and collaborative data of an example heat supply operation system, so as to estimate collaborative performance knowledge points and evaluate performance expression; and then, parameter learning is carried out on the two networks by learning data of a heat supply operation system, and a more optimized heat supply collaborative analysis network is generated. And continuously optimizing the network performance through loop parameter learning, and finally outputting a collaborative performance knowledge point estimation network. The collaborative performance knowledge point estimation network can be used for performing energy efficiency optimization auxiliary analysis on the target heat supply operation system and providing</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118690160A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Heat supply energy efficiency optimization auxiliary analysis method and system based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YICHAO&rft.date=2024-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118690160A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |