Ultra-low power consumption microcontroller trace point condensation method based on TensorFlow architecture

The invention discloses an ultra-low power consumption microcontroller plot condensation method based on a TensorFlow architecture, and the method comprises the steps: obtaining secondary radar original decoding data and calibration data of different maneuvering targets, and carrying out the correla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG AIGUO, WU BING, HU XIN, TAN SHENGJIN, ZHANG KUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG AIGUO
WU BING
HU XIN
TAN SHENGJIN
ZHANG KUN
description The invention discloses an ultra-low power consumption microcontroller plot condensation method based on a TensorFlow architecture, and the method comprises the steps: obtaining secondary radar original decoding data and calibration data of different maneuvering targets, and carrying out the correlation of the secondary radar original decoding data and the calibration data, and forming sample data; the method comprises the following steps: firstly filtering trace points in a target trace point group and amplitudes corresponding to the trace points through an RC low-pass filter, filtering out high-frequency noise brought by environment and hardware equipment, and shrinking the range of the trace point group; and inputting the trace point azimuth, distance and amplitude data into a three-dimensional k-means clustering model, and realizing accurate classification of a real trace point group and a trace point group formed by interference and calculation of the center of the trace point group through a k-means alg
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118688782A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118688782A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118688782A3</originalsourceid><addsrcrecordid>eNqNzDEOwjAMBdAsDAi4QzhAh4IEWauKiompzFVIjBopjSPHVa-PKzgAk_X9n_5WxWdkslXERWdcgLTDVOYpc8Ckp-AI5cGEMUon0oG4kHh1HlKxXwg8otcvW8Bryb00SN26asmNgcHxTLBXm7eNBQ6_u1PH7ta39woyDlCyrCfgoX3UtbkYczWn5vyP-QD45kNX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ultra-low power consumption microcontroller trace point condensation method based on TensorFlow architecture</title><source>esp@cenet</source><creator>WANG AIGUO ; WU BING ; HU XIN ; TAN SHENGJIN ; ZHANG KUN</creator><creatorcontrib>WANG AIGUO ; WU BING ; HU XIN ; TAN SHENGJIN ; ZHANG KUN</creatorcontrib><description>The invention discloses an ultra-low power consumption microcontroller plot condensation method based on a TensorFlow architecture, and the method comprises the steps: obtaining secondary radar original decoding data and calibration data of different maneuvering targets, and carrying out the correlation of the secondary radar original decoding data and the calibration data, and forming sample data; the method comprises the following steps: firstly filtering trace points in a target trace point group and amplitudes corresponding to the trace points through an RC low-pass filter, filtering out high-frequency noise brought by environment and hardware equipment, and shrinking the range of the trace point group; and inputting the trace point azimuth, distance and amplitude data into a three-dimensional k-means clustering model, and realizing accurate classification of a real trace point group and a trace point group formed by interference and calculation of the center of the trace point group through a k-means alg</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; ELECTRIC DIGITAL DATA PROCESSING ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118688782A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240924&amp;DB=EPODOC&amp;CC=CN&amp;NR=118688782A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG AIGUO</creatorcontrib><creatorcontrib>WU BING</creatorcontrib><creatorcontrib>HU XIN</creatorcontrib><creatorcontrib>TAN SHENGJIN</creatorcontrib><creatorcontrib>ZHANG KUN</creatorcontrib><title>Ultra-low power consumption microcontroller trace point condensation method based on TensorFlow architecture</title><description>The invention discloses an ultra-low power consumption microcontroller plot condensation method based on a TensorFlow architecture, and the method comprises the steps: obtaining secondary radar original decoding data and calibration data of different maneuvering targets, and carrying out the correlation of the secondary radar original decoding data and the calibration data, and forming sample data; the method comprises the following steps: firstly filtering trace points in a target trace point group and amplitudes corresponding to the trace points through an RC low-pass filter, filtering out high-frequency noise brought by environment and hardware equipment, and shrinking the range of the trace point group; and inputting the trace point azimuth, distance and amplitude data into a three-dimensional k-means clustering model, and realizing accurate classification of a real trace point group and a trace point group formed by interference and calculation of the center of the trace point group through a k-means alg</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEOwjAMBdAsDAi4QzhAh4IEWauKiompzFVIjBopjSPHVa-PKzgAk_X9n_5WxWdkslXERWdcgLTDVOYpc8Ckp-AI5cGEMUon0oG4kHh1HlKxXwg8otcvW8Bryb00SN26asmNgcHxTLBXm7eNBQ6_u1PH7ta39woyDlCyrCfgoX3UtbkYczWn5vyP-QD45kNX</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>WANG AIGUO</creator><creator>WU BING</creator><creator>HU XIN</creator><creator>TAN SHENGJIN</creator><creator>ZHANG KUN</creator><scope>EVB</scope></search><sort><creationdate>20240924</creationdate><title>Ultra-low power consumption microcontroller trace point condensation method based on TensorFlow architecture</title><author>WANG AIGUO ; WU BING ; HU XIN ; TAN SHENGJIN ; ZHANG KUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118688782A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG AIGUO</creatorcontrib><creatorcontrib>WU BING</creatorcontrib><creatorcontrib>HU XIN</creatorcontrib><creatorcontrib>TAN SHENGJIN</creatorcontrib><creatorcontrib>ZHANG KUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG AIGUO</au><au>WU BING</au><au>HU XIN</au><au>TAN SHENGJIN</au><au>ZHANG KUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ultra-low power consumption microcontroller trace point condensation method based on TensorFlow architecture</title><date>2024-09-24</date><risdate>2024</risdate><abstract>The invention discloses an ultra-low power consumption microcontroller plot condensation method based on a TensorFlow architecture, and the method comprises the steps: obtaining secondary radar original decoding data and calibration data of different maneuvering targets, and carrying out the correlation of the secondary radar original decoding data and the calibration data, and forming sample data; the method comprises the following steps: firstly filtering trace points in a target trace point group and amplitudes corresponding to the trace points through an RC low-pass filter, filtering out high-frequency noise brought by environment and hardware equipment, and shrinking the range of the trace point group; and inputting the trace point azimuth, distance and amplitude data into a three-dimensional k-means clustering model, and realizing accurate classification of a real trace point group and a trace point group formed by interference and calculation of the center of the trace point group through a k-means alg</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118688782A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
ELECTRIC DIGITAL DATA PROCESSING
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
PHYSICS
RADIO DIRECTION-FINDING
RADIO NAVIGATION
TESTING
title Ultra-low power consumption microcontroller trace point condensation method based on TensorFlow architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20AIGUO&rft.date=2024-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118688782A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true