Scene text recognition method for guiding attention generation based on cross-domain supervision signal

The invention discloses a scene text recognition method for guiding attention generation based on a cross-domain supervision signal. The method comprises the following steps of: extracting a text core region as a supervision signal in a coding stage, recursively performing attention guidance, fusing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN JIANDE, WAN WENBO, XUE FANFU, LI JING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN JIANDE
WAN WENBO
XUE FANFU
LI JING
description The invention discloses a scene text recognition method for guiding attention generation based on a cross-domain supervision signal. The method comprises the following steps of: extracting a text core region as a supervision signal in a coding stage, recursively performing attention guidance, fusing coding information generated by guiding attention with coding information generated without guiding attention by using a gating mechanism, and enhancing the robustness of the coding information; in the decoding stage, an efficient and parallel adaptive conversion decoder is combined for decoding, attention offset in the decoding stage is prevented, and the recognition performance of the model is improved. Besides, in a training stage, the method adopts a fusion strategy of artificial guidance and model adaptive learning to accurately learn a core region of a text, so that a correct supervision signal is provided for attention guidance. 本发明公开了基于跨域监督信号引导注意力生成的场景文本识别方法。该方法在编码阶段提取文本核心区域作为监督信号递归地进行注意力引导,使用门控机制将引导注意力生成的
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118675162A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118675162A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118675162A3</originalsourceid><addsrcrecordid>eNqNjjEOgkAQRWksjHqH8QAUaERbQzRWNtqTkR2WSWCH7AzG4wvEA1j9l_z3k79M_KOiQGD0MYhUiQ9sLAE6skYc1BLBD-w4eEAzCnPpx0nEGV-o5GCEKopq6qRDDqBDT_HNOhnKPmC7ThY1tkqbX66S7fXyLG4p9VKS9jjdsLK4Z9kpPx6yfHfe_-N8ASAjQM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Scene text recognition method for guiding attention generation based on cross-domain supervision signal</title><source>esp@cenet</source><creator>SUN JIANDE ; WAN WENBO ; XUE FANFU ; LI JING</creator><creatorcontrib>SUN JIANDE ; WAN WENBO ; XUE FANFU ; LI JING</creatorcontrib><description>The invention discloses a scene text recognition method for guiding attention generation based on a cross-domain supervision signal. The method comprises the following steps of: extracting a text core region as a supervision signal in a coding stage, recursively performing attention guidance, fusing coding information generated by guiding attention with coding information generated without guiding attention by using a gating mechanism, and enhancing the robustness of the coding information; in the decoding stage, an efficient and parallel adaptive conversion decoder is combined for decoding, attention offset in the decoding stage is prevented, and the recognition performance of the model is improved. Besides, in a training stage, the method adopts a fusion strategy of artificial guidance and model adaptive learning to accurately learn a core region of a text, so that a correct supervision signal is provided for attention guidance. 本发明公开了基于跨域监督信号引导注意力生成的场景文本识别方法。该方法在编码阶段提取文本核心区域作为监督信号递归地进行注意力引导,使用门控机制将引导注意力生成的</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118675162A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118675162A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN JIANDE</creatorcontrib><creatorcontrib>WAN WENBO</creatorcontrib><creatorcontrib>XUE FANFU</creatorcontrib><creatorcontrib>LI JING</creatorcontrib><title>Scene text recognition method for guiding attention generation based on cross-domain supervision signal</title><description>The invention discloses a scene text recognition method for guiding attention generation based on a cross-domain supervision signal. The method comprises the following steps of: extracting a text core region as a supervision signal in a coding stage, recursively performing attention guidance, fusing coding information generated by guiding attention with coding information generated without guiding attention by using a gating mechanism, and enhancing the robustness of the coding information; in the decoding stage, an efficient and parallel adaptive conversion decoder is combined for decoding, attention offset in the decoding stage is prevented, and the recognition performance of the model is improved. Besides, in a training stage, the method adopts a fusion strategy of artificial guidance and model adaptive learning to accurately learn a core region of a text, so that a correct supervision signal is provided for attention guidance. 本发明公开了基于跨域监督信号引导注意力生成的场景文本识别方法。该方法在编码阶段提取文本核心区域作为监督信号递归地进行注意力引导,使用门控机制将引导注意力生成的</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjjEOgkAQRWksjHqH8QAUaERbQzRWNtqTkR2WSWCH7AzG4wvEA1j9l_z3k79M_KOiQGD0MYhUiQ9sLAE6skYc1BLBD-w4eEAzCnPpx0nEGV-o5GCEKopq6qRDDqBDT_HNOhnKPmC7ThY1tkqbX66S7fXyLG4p9VKS9jjdsLK4Z9kpPx6yfHfe_-N8ASAjQM0</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>SUN JIANDE</creator><creator>WAN WENBO</creator><creator>XUE FANFU</creator><creator>LI JING</creator><scope>EVB</scope></search><sort><creationdate>20240920</creationdate><title>Scene text recognition method for guiding attention generation based on cross-domain supervision signal</title><author>SUN JIANDE ; WAN WENBO ; XUE FANFU ; LI JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118675162A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN JIANDE</creatorcontrib><creatorcontrib>WAN WENBO</creatorcontrib><creatorcontrib>XUE FANFU</creatorcontrib><creatorcontrib>LI JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN JIANDE</au><au>WAN WENBO</au><au>XUE FANFU</au><au>LI JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Scene text recognition method for guiding attention generation based on cross-domain supervision signal</title><date>2024-09-20</date><risdate>2024</risdate><abstract>The invention discloses a scene text recognition method for guiding attention generation based on a cross-domain supervision signal. The method comprises the following steps of: extracting a text core region as a supervision signal in a coding stage, recursively performing attention guidance, fusing coding information generated by guiding attention with coding information generated without guiding attention by using a gating mechanism, and enhancing the robustness of the coding information; in the decoding stage, an efficient and parallel adaptive conversion decoder is combined for decoding, attention offset in the decoding stage is prevented, and the recognition performance of the model is improved. Besides, in a training stage, the method adopts a fusion strategy of artificial guidance and model adaptive learning to accurately learn a core region of a text, so that a correct supervision signal is provided for attention guidance. 本发明公开了基于跨域监督信号引导注意力生成的场景文本识别方法。该方法在编码阶段提取文本核心区域作为监督信号递归地进行注意力引导,使用门控机制将引导注意力生成的</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118675162A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Scene text recognition method for guiding attention generation based on cross-domain supervision signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20JIANDE&rft.date=2024-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118675162A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true