Deep convolutional level set network for medical image segmentation

A deep convolution level set network for medical image segmentation constructs a new parallel cavity convolution sequence module in a pre-segmentation part of a U-Net model, captures local and global feature information at the same time, enhances feature extraction, and minimizes loss of image infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU JIASHAN, YANG RENTAO, WANG XIAOFENG, WU ZHIZE, ZOU LE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU JIASHAN
YANG RENTAO
WANG XIAOFENG
WU ZHIZE
ZOU LE
description A deep convolution level set network for medical image segmentation constructs a new parallel cavity convolution sequence module in a pre-segmentation part of a U-Net model, captures local and global feature information at the same time, enhances feature extraction, and minimizes loss of image information in a downsampling process; a mixed attention module is constructed at a decoder end, the most important features can be automatically learned, selected and weighted, the influence of redundant information is reduced, and network upsampling is helped to recover information and reconstruct images; taking the output of the U-Net as a traction item of an energy function in a level set method, taking the level set method as a post-processing step, and receiving prior information from the U-Net; a distance regular term and an edge stopping function based on a logarithmic function and a polynomial function are constructed, and a segmentation image boundary is further optimized by predicting edge information of a ta
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118674734A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118674734A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118674734A3</originalsourceid><addsrcrecordid>eNrjZHB2SU0tUEjOzyvLzyktyczPS8xRyEktS81RKE4tUchLLSnPL8pWSMsvUshNTclMBspm5iampwJl03NT80oSQVp4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicirQoHhnP0NDCzNzE3NjE0djYtQAAKXrMtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep convolutional level set network for medical image segmentation</title><source>esp@cenet</source><creator>LIU JIASHAN ; YANG RENTAO ; WANG XIAOFENG ; WU ZHIZE ; ZOU LE</creator><creatorcontrib>LIU JIASHAN ; YANG RENTAO ; WANG XIAOFENG ; WU ZHIZE ; ZOU LE</creatorcontrib><description>A deep convolution level set network for medical image segmentation constructs a new parallel cavity convolution sequence module in a pre-segmentation part of a U-Net model, captures local and global feature information at the same time, enhances feature extraction, and minimizes loss of image information in a downsampling process; a mixed attention module is constructed at a decoder end, the most important features can be automatically learned, selected and weighted, the influence of redundant information is reduced, and network upsampling is helped to recover information and reconstruct images; taking the output of the U-Net as a traction item of an energy function in a level set method, taking the level set method as a post-processing step, and receiving prior information from the U-Net; a distance regular term and an edge stopping function based on a logarithmic function and a polynomial function are constructed, and a segmentation image boundary is further optimized by predicting edge information of a ta</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118674734A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118674734A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIASHAN</creatorcontrib><creatorcontrib>YANG RENTAO</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>WU ZHIZE</creatorcontrib><creatorcontrib>ZOU LE</creatorcontrib><title>Deep convolutional level set network for medical image segmentation</title><description>A deep convolution level set network for medical image segmentation constructs a new parallel cavity convolution sequence module in a pre-segmentation part of a U-Net model, captures local and global feature information at the same time, enhances feature extraction, and minimizes loss of image information in a downsampling process; a mixed attention module is constructed at a decoder end, the most important features can be automatically learned, selected and weighted, the influence of redundant information is reduced, and network upsampling is helped to recover information and reconstruct images; taking the output of the U-Net as a traction item of an energy function in a level set method, taking the level set method as a post-processing step, and receiving prior information from the U-Net; a distance regular term and an edge stopping function based on a logarithmic function and a polynomial function are constructed, and a segmentation image boundary is further optimized by predicting edge information of a ta</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB2SU0tUEjOzyvLzyktyczPS8xRyEktS81RKE4tUchLLSnPL8pWSMsvUshNTclMBspm5iampwJl03NT80oSQVp4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicirQoHhnP0NDCzNzE3NjE0djYtQAAKXrMtw</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>LIU JIASHAN</creator><creator>YANG RENTAO</creator><creator>WANG XIAOFENG</creator><creator>WU ZHIZE</creator><creator>ZOU LE</creator><scope>EVB</scope></search><sort><creationdate>20240920</creationdate><title>Deep convolutional level set network for medical image segmentation</title><author>LIU JIASHAN ; YANG RENTAO ; WANG XIAOFENG ; WU ZHIZE ; ZOU LE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118674734A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIASHAN</creatorcontrib><creatorcontrib>YANG RENTAO</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>WU ZHIZE</creatorcontrib><creatorcontrib>ZOU LE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIASHAN</au><au>YANG RENTAO</au><au>WANG XIAOFENG</au><au>WU ZHIZE</au><au>ZOU LE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep convolutional level set network for medical image segmentation</title><date>2024-09-20</date><risdate>2024</risdate><abstract>A deep convolution level set network for medical image segmentation constructs a new parallel cavity convolution sequence module in a pre-segmentation part of a U-Net model, captures local and global feature information at the same time, enhances feature extraction, and minimizes loss of image information in a downsampling process; a mixed attention module is constructed at a decoder end, the most important features can be automatically learned, selected and weighted, the influence of redundant information is reduced, and network upsampling is helped to recover information and reconstruct images; taking the output of the U-Net as a traction item of an energy function in a level set method, taking the level set method as a post-processing step, and receiving prior information from the U-Net; a distance regular term and an edge stopping function based on a logarithmic function and a polynomial function are constructed, and a segmentation image boundary is further optimized by predicting edge information of a ta</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118674734A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Deep convolutional level set network for medical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIASHAN&rft.date=2024-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118674734A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true