Emotion classification method based on feature selection and feature extraction

The invention discloses an emotion classification method based on feature selection and feature extraction, and the method is specifically implemented according to the following steps: obtaining an English text corpus, carrying out the preprocessing of the English text corpus, obtaining an English t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG YICHUAN, YAN JINPEI, LIU XIAOXUE, ZHANG BEIBEI, SI QIANG, XU XIAOYAN, LIU ZHAOLI, SUN XUESONG, HU ZIWEI, NIE GAOYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG YICHUAN
YAN JINPEI
LIU XIAOXUE
ZHANG BEIBEI
SI QIANG
XU XIAOYAN
LIU ZHAOLI
SUN XUESONG
HU ZIWEI
NIE GAOYANG
description The invention discloses an emotion classification method based on feature selection and feature extraction, and the method is specifically implemented according to the following steps: obtaining an English text corpus, carrying out the preprocessing of the English text corpus, obtaining an English text data set, carrying out the word segmentation of all texts in the English text data set, and obtaining a word sequence; obtaining feature words in the word sequence by adopting a syntactic dependency relationship and part-of-speech features, and forming a feature word set by the feature words; performing feature extraction on each feature word in the feature word set by adopting an improved TF-IDF algorithm to obtain a weight representation of each feature word, forming a weight vector of the feature word set by the weight representation of each feature word, and forming a weight matrix through the weight vectors; performing weighted fusion on the weight matrix and an attention matrix output by the BERT model to
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118673909A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118673909A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118673909A3</originalsourceid><addsrcrecordid>eNrjZPB3zc0vyczPU0jOSSwuzkzLTE4Ec3NTSzLyUxSSEotTUxSA_LTUxJLSolSF4tSc1GSwisS8FLhoakVJUSJYmIeBNS0xpziVF0pzMyi6uYY4e-imFuTHpxYXJCan5qWWxDv7GRpamJkbWxpYOhoTowYAl3E3hA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Emotion classification method based on feature selection and feature extraction</title><source>esp@cenet</source><creator>WANG YICHUAN ; YAN JINPEI ; LIU XIAOXUE ; ZHANG BEIBEI ; SI QIANG ; XU XIAOYAN ; LIU ZHAOLI ; SUN XUESONG ; HU ZIWEI ; NIE GAOYANG</creator><creatorcontrib>WANG YICHUAN ; YAN JINPEI ; LIU XIAOXUE ; ZHANG BEIBEI ; SI QIANG ; XU XIAOYAN ; LIU ZHAOLI ; SUN XUESONG ; HU ZIWEI ; NIE GAOYANG</creatorcontrib><description>The invention discloses an emotion classification method based on feature selection and feature extraction, and the method is specifically implemented according to the following steps: obtaining an English text corpus, carrying out the preprocessing of the English text corpus, obtaining an English text data set, carrying out the word segmentation of all texts in the English text data set, and obtaining a word sequence; obtaining feature words in the word sequence by adopting a syntactic dependency relationship and part-of-speech features, and forming a feature word set by the feature words; performing feature extraction on each feature word in the feature word set by adopting an improved TF-IDF algorithm to obtain a weight representation of each feature word, forming a weight vector of the feature word set by the weight representation of each feature word, and forming a weight matrix through the weight vectors; performing weighted fusion on the weight matrix and an attention matrix output by the BERT model to</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118673909A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118673909A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YICHUAN</creatorcontrib><creatorcontrib>YAN JINPEI</creatorcontrib><creatorcontrib>LIU XIAOXUE</creatorcontrib><creatorcontrib>ZHANG BEIBEI</creatorcontrib><creatorcontrib>SI QIANG</creatorcontrib><creatorcontrib>XU XIAOYAN</creatorcontrib><creatorcontrib>LIU ZHAOLI</creatorcontrib><creatorcontrib>SUN XUESONG</creatorcontrib><creatorcontrib>HU ZIWEI</creatorcontrib><creatorcontrib>NIE GAOYANG</creatorcontrib><title>Emotion classification method based on feature selection and feature extraction</title><description>The invention discloses an emotion classification method based on feature selection and feature extraction, and the method is specifically implemented according to the following steps: obtaining an English text corpus, carrying out the preprocessing of the English text corpus, obtaining an English text data set, carrying out the word segmentation of all texts in the English text data set, and obtaining a word sequence; obtaining feature words in the word sequence by adopting a syntactic dependency relationship and part-of-speech features, and forming a feature word set by the feature words; performing feature extraction on each feature word in the feature word set by adopting an improved TF-IDF algorithm to obtain a weight representation of each feature word, forming a weight vector of the feature word set by the weight representation of each feature word, and forming a weight matrix through the weight vectors; performing weighted fusion on the weight matrix and an attention matrix output by the BERT model to</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3zc0vyczPU0jOSSwuzkzLTE4Ec3NTSzLyUxSSEotTUxSA_LTUxJLSolSF4tSc1GSwisS8FLhoakVJUSJYmIeBNS0xpziVF0pzMyi6uYY4e-imFuTHpxYXJCan5qWWxDv7GRpamJkbWxpYOhoTowYAl3E3hA</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>WANG YICHUAN</creator><creator>YAN JINPEI</creator><creator>LIU XIAOXUE</creator><creator>ZHANG BEIBEI</creator><creator>SI QIANG</creator><creator>XU XIAOYAN</creator><creator>LIU ZHAOLI</creator><creator>SUN XUESONG</creator><creator>HU ZIWEI</creator><creator>NIE GAOYANG</creator><scope>EVB</scope></search><sort><creationdate>20240920</creationdate><title>Emotion classification method based on feature selection and feature extraction</title><author>WANG YICHUAN ; YAN JINPEI ; LIU XIAOXUE ; ZHANG BEIBEI ; SI QIANG ; XU XIAOYAN ; LIU ZHAOLI ; SUN XUESONG ; HU ZIWEI ; NIE GAOYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118673909A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YICHUAN</creatorcontrib><creatorcontrib>YAN JINPEI</creatorcontrib><creatorcontrib>LIU XIAOXUE</creatorcontrib><creatorcontrib>ZHANG BEIBEI</creatorcontrib><creatorcontrib>SI QIANG</creatorcontrib><creatorcontrib>XU XIAOYAN</creatorcontrib><creatorcontrib>LIU ZHAOLI</creatorcontrib><creatorcontrib>SUN XUESONG</creatorcontrib><creatorcontrib>HU ZIWEI</creatorcontrib><creatorcontrib>NIE GAOYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YICHUAN</au><au>YAN JINPEI</au><au>LIU XIAOXUE</au><au>ZHANG BEIBEI</au><au>SI QIANG</au><au>XU XIAOYAN</au><au>LIU ZHAOLI</au><au>SUN XUESONG</au><au>HU ZIWEI</au><au>NIE GAOYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Emotion classification method based on feature selection and feature extraction</title><date>2024-09-20</date><risdate>2024</risdate><abstract>The invention discloses an emotion classification method based on feature selection and feature extraction, and the method is specifically implemented according to the following steps: obtaining an English text corpus, carrying out the preprocessing of the English text corpus, obtaining an English text data set, carrying out the word segmentation of all texts in the English text data set, and obtaining a word sequence; obtaining feature words in the word sequence by adopting a syntactic dependency relationship and part-of-speech features, and forming a feature word set by the feature words; performing feature extraction on each feature word in the feature word set by adopting an improved TF-IDF algorithm to obtain a weight representation of each feature word, forming a weight vector of the feature word set by the weight representation of each feature word, and forming a weight matrix through the weight vectors; performing weighted fusion on the weight matrix and an attention matrix output by the BERT model to</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118673909A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Emotion classification method based on feature selection and feature extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YICHUAN&rft.date=2024-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118673909A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true