Arrhythmia detection model modeling method based on multi-view multi-scale fusion network

The invention discloses an arrhythmia detection model modeling method based on a multi-view multi-scale fusion network, and the method comprises the steps: obtaining three-dimensional features of an original ECG signal through a space attention module, a channel attention module and a multi-scale ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIANG MINGFENG, HE XIAOYU, LI YANG, ZHU YELONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIANG MINGFENG
HE XIAOYU
LI YANG
ZHU YELONG
description The invention discloses an arrhythmia detection model modeling method based on a multi-view multi-scale fusion network, and the method comprises the steps: obtaining three-dimensional features of an original ECG signal through a space attention module, a channel attention module and a multi-scale time attention module, and carrying out the residual connection of the features and the original ECG signal, so as to form two mixed features; the two mixed features are input into two parallel networks for deep feature extraction, and the auxiliary information is input into the parallel networks to be fused with the deep features; and extracting the features fused with the auxiliary information in the two paths for further fusion, inputting the fused features into a new multi-layer perceptron to generate a prediction result, taking the prediction result as network output, and using focus loss during training. According to the method, the abnormal features shown in different views when the arrhythmia occurs are conce
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118673402A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118673402A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118673402A3</originalsourceid><addsrcrecordid>eNrjZIh0LCrKqCzJyM1MVEhJLUlNLsnMz1PIzU9JzYGQmXnpCrmpJRn5KQpJicWpKQog6dKckkzdsszUciizODkxJ1UhrbQYpDkvtaQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkaWpiZG5sYGDkaE6MGACNqOyY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Arrhythmia detection model modeling method based on multi-view multi-scale fusion network</title><source>esp@cenet</source><creator>JIANG MINGFENG ; HE XIAOYU ; LI YANG ; ZHU YELONG</creator><creatorcontrib>JIANG MINGFENG ; HE XIAOYU ; LI YANG ; ZHU YELONG</creatorcontrib><description>The invention discloses an arrhythmia detection model modeling method based on a multi-view multi-scale fusion network, and the method comprises the steps: obtaining three-dimensional features of an original ECG signal through a space attention module, a channel attention module and a multi-scale time attention module, and carrying out the residual connection of the features and the original ECG signal, so as to form two mixed features; the two mixed features are input into two parallel networks for deep feature extraction, and the auxiliary information is input into the parallel networks to be fused with the deep features; and extracting the features fused with the auxiliary information in the two paths for further fusion, inputting the fused features into a new multi-layer perceptron to generate a prediction result, taking the prediction result as network output, and using focus loss during training. According to the method, the abnormal features shown in different views when the arrhythmia occurs are conce</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118673402A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240920&amp;DB=EPODOC&amp;CC=CN&amp;NR=118673402A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIANG MINGFENG</creatorcontrib><creatorcontrib>HE XIAOYU</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>ZHU YELONG</creatorcontrib><title>Arrhythmia detection model modeling method based on multi-view multi-scale fusion network</title><description>The invention discloses an arrhythmia detection model modeling method based on a multi-view multi-scale fusion network, and the method comprises the steps: obtaining three-dimensional features of an original ECG signal through a space attention module, a channel attention module and a multi-scale time attention module, and carrying out the residual connection of the features and the original ECG signal, so as to form two mixed features; the two mixed features are input into two parallel networks for deep feature extraction, and the auxiliary information is input into the parallel networks to be fused with the deep features; and extracting the features fused with the auxiliary information in the two paths for further fusion, inputting the fused features into a new multi-layer perceptron to generate a prediction result, taking the prediction result as network output, and using focus loss during training. According to the method, the abnormal features shown in different views when the arrhythmia occurs are conce</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIh0LCrKqCzJyM1MVEhJLUlNLsnMz1PIzU9JzYGQmXnpCrmpJRn5KQpJicWpKQog6dKckkzdsszUciizODkxJ1UhrbQYpDkvtaQ8vyibh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqcCVcY7-xkaWpiZG5sYGDkaE6MGACNqOyY</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>JIANG MINGFENG</creator><creator>HE XIAOYU</creator><creator>LI YANG</creator><creator>ZHU YELONG</creator><scope>EVB</scope></search><sort><creationdate>20240920</creationdate><title>Arrhythmia detection model modeling method based on multi-view multi-scale fusion network</title><author>JIANG MINGFENG ; HE XIAOYU ; LI YANG ; ZHU YELONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118673402A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>JIANG MINGFENG</creatorcontrib><creatorcontrib>HE XIAOYU</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>ZHU YELONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIANG MINGFENG</au><au>HE XIAOYU</au><au>LI YANG</au><au>ZHU YELONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Arrhythmia detection model modeling method based on multi-view multi-scale fusion network</title><date>2024-09-20</date><risdate>2024</risdate><abstract>The invention discloses an arrhythmia detection model modeling method based on a multi-view multi-scale fusion network, and the method comprises the steps: obtaining three-dimensional features of an original ECG signal through a space attention module, a channel attention module and a multi-scale time attention module, and carrying out the residual connection of the features and the original ECG signal, so as to form two mixed features; the two mixed features are input into two parallel networks for deep feature extraction, and the auxiliary information is input into the parallel networks to be fused with the deep features; and extracting the features fused with the auxiliary information in the two paths for further fusion, inputting the fused features into a new multi-layer perceptron to generate a prediction result, taking the prediction result as network output, and using focus loss during training. According to the method, the abnormal features shown in different views when the arrhythmia occurs are conce</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118673402A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DIAGNOSIS
ELECTRIC DIGITAL DATA PROCESSING
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Arrhythmia detection model modeling method based on multi-view multi-scale fusion network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIANG%20MINGFENG&rft.date=2024-09-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118673402A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true