Thyroid anomaly identification method and system

According to the thyroid anomaly identification method and system provided by the invention, the potential feature expression is obtained through the thyroid description feature expression corresponding to the paradigm thyroid description data and the anomaly description feature expression, then the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZOU XUMING, YUAN BAOHONG, WANG RUOTIAN, LI RUHONG, ZHOU YIRAN, ZHOU HAODONG, YANG SONGLIN, LV WEIBIN, TAN JING, ZHU YANKUN, XIONG JIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZOU XUMING
YUAN BAOHONG
WANG RUOTIAN
LI RUHONG
ZHOU YIRAN
ZHOU HAODONG
YANG SONGLIN
LV WEIBIN
TAN JING
ZHU YANKUN
XIONG JIAN
description According to the thyroid anomaly identification method and system provided by the invention, the potential feature expression is obtained through the thyroid description feature expression corresponding to the paradigm thyroid description data and the anomaly description feature expression, then the to-be-trained identification unit is iteratively trained through the potential feature expression, and the target identification unit is obtained through training. Therefore, the target identification unit can generate the target thyroid description data through the input identification data, that is, multiple thyroid description data can be quickly generated through the target identification unit obtained through training according to requirements, and thus the accuracy and reliability of thyroid anomaly identification are improved. 本申请提供的一种甲状腺异常识别方法及系统,通过范例甲状腺描述数据对应的甲状腺描述特征表示以及异常描述特征表示得到潜在特征表达,然后通过该潜在特征表达对待训练识别单元进行迭代训练,训练得到目标识别单元,该目标识别单元即可通过输入的识别数据生成目标甲状腺描述数据,即,可以根据需求通过训练得到的目标识别单元快速生成多个甲状腺描述数据,从而提升甲状腺异常识别的准确性和可靠
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118658609A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118658609A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118658609A3</originalsourceid><addsrcrecordid>eNrjZDAIyagsys9MUUjMy89NzKlUyExJzSvJTMtMTizJzM9TyE0tycgHyaYoFFcWl6Tm8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLM1MLMwNLR2Ni1AAAkNQrxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Thyroid anomaly identification method and system</title><source>esp@cenet</source><creator>ZOU XUMING ; YUAN BAOHONG ; WANG RUOTIAN ; LI RUHONG ; ZHOU YIRAN ; ZHOU HAODONG ; YANG SONGLIN ; LV WEIBIN ; TAN JING ; ZHU YANKUN ; XIONG JIAN</creator><creatorcontrib>ZOU XUMING ; YUAN BAOHONG ; WANG RUOTIAN ; LI RUHONG ; ZHOU YIRAN ; ZHOU HAODONG ; YANG SONGLIN ; LV WEIBIN ; TAN JING ; ZHU YANKUN ; XIONG JIAN</creatorcontrib><description>According to the thyroid anomaly identification method and system provided by the invention, the potential feature expression is obtained through the thyroid description feature expression corresponding to the paradigm thyroid description data and the anomaly description feature expression, then the to-be-trained identification unit is iteratively trained through the potential feature expression, and the target identification unit is obtained through training. Therefore, the target identification unit can generate the target thyroid description data through the input identification data, that is, multiple thyroid description data can be quickly generated through the target identification unit obtained through training according to requirements, and thus the accuracy and reliability of thyroid anomaly identification are improved. 本申请提供的一种甲状腺异常识别方法及系统,通过范例甲状腺描述数据对应的甲状腺描述特征表示以及异常描述特征表示得到潜在特征表达,然后通过该潜在特征表达对待训练识别单元进行迭代训练,训练得到目标识别单元,该目标识别单元即可通过输入的识别数据生成目标甲状腺描述数据,即,可以根据需求通过训练得到的目标识别单元快速生成多个甲状腺描述数据,从而提升甲状腺异常识别的准确性和可靠</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240917&amp;DB=EPODOC&amp;CC=CN&amp;NR=118658609A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240917&amp;DB=EPODOC&amp;CC=CN&amp;NR=118658609A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZOU XUMING</creatorcontrib><creatorcontrib>YUAN BAOHONG</creatorcontrib><creatorcontrib>WANG RUOTIAN</creatorcontrib><creatorcontrib>LI RUHONG</creatorcontrib><creatorcontrib>ZHOU YIRAN</creatorcontrib><creatorcontrib>ZHOU HAODONG</creatorcontrib><creatorcontrib>YANG SONGLIN</creatorcontrib><creatorcontrib>LV WEIBIN</creatorcontrib><creatorcontrib>TAN JING</creatorcontrib><creatorcontrib>ZHU YANKUN</creatorcontrib><creatorcontrib>XIONG JIAN</creatorcontrib><title>Thyroid anomaly identification method and system</title><description>According to the thyroid anomaly identification method and system provided by the invention, the potential feature expression is obtained through the thyroid description feature expression corresponding to the paradigm thyroid description data and the anomaly description feature expression, then the to-be-trained identification unit is iteratively trained through the potential feature expression, and the target identification unit is obtained through training. Therefore, the target identification unit can generate the target thyroid description data through the input identification data, that is, multiple thyroid description data can be quickly generated through the target identification unit obtained through training according to requirements, and thus the accuracy and reliability of thyroid anomaly identification are improved. 本申请提供的一种甲状腺异常识别方法及系统,通过范例甲状腺描述数据对应的甲状腺描述特征表示以及异常描述特征表示得到潜在特征表达,然后通过该潜在特征表达对待训练识别单元进行迭代训练,训练得到目标识别单元,该目标识别单元即可通过输入的识别数据生成目标甲状腺描述数据,即,可以根据需求通过训练得到的目标识别单元快速生成多个甲状腺描述数据,从而提升甲状腺异常识别的准确性和可靠</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIyagsys9MUUjMy89NzKlUyExJzSvJTMtMTizJzM9TyE0tycgHyaYoFFcWl6Tm8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLM1MLMwNLR2Ni1AAAkNQrxg</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>ZOU XUMING</creator><creator>YUAN BAOHONG</creator><creator>WANG RUOTIAN</creator><creator>LI RUHONG</creator><creator>ZHOU YIRAN</creator><creator>ZHOU HAODONG</creator><creator>YANG SONGLIN</creator><creator>LV WEIBIN</creator><creator>TAN JING</creator><creator>ZHU YANKUN</creator><creator>XIONG JIAN</creator><scope>EVB</scope></search><sort><creationdate>20240917</creationdate><title>Thyroid anomaly identification method and system</title><author>ZOU XUMING ; YUAN BAOHONG ; WANG RUOTIAN ; LI RUHONG ; ZHOU YIRAN ; ZHOU HAODONG ; YANG SONGLIN ; LV WEIBIN ; TAN JING ; ZHU YANKUN ; XIONG JIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118658609A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZOU XUMING</creatorcontrib><creatorcontrib>YUAN BAOHONG</creatorcontrib><creatorcontrib>WANG RUOTIAN</creatorcontrib><creatorcontrib>LI RUHONG</creatorcontrib><creatorcontrib>ZHOU YIRAN</creatorcontrib><creatorcontrib>ZHOU HAODONG</creatorcontrib><creatorcontrib>YANG SONGLIN</creatorcontrib><creatorcontrib>LV WEIBIN</creatorcontrib><creatorcontrib>TAN JING</creatorcontrib><creatorcontrib>ZHU YANKUN</creatorcontrib><creatorcontrib>XIONG JIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZOU XUMING</au><au>YUAN BAOHONG</au><au>WANG RUOTIAN</au><au>LI RUHONG</au><au>ZHOU YIRAN</au><au>ZHOU HAODONG</au><au>YANG SONGLIN</au><au>LV WEIBIN</au><au>TAN JING</au><au>ZHU YANKUN</au><au>XIONG JIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Thyroid anomaly identification method and system</title><date>2024-09-17</date><risdate>2024</risdate><abstract>According to the thyroid anomaly identification method and system provided by the invention, the potential feature expression is obtained through the thyroid description feature expression corresponding to the paradigm thyroid description data and the anomaly description feature expression, then the to-be-trained identification unit is iteratively trained through the potential feature expression, and the target identification unit is obtained through training. Therefore, the target identification unit can generate the target thyroid description data through the input identification data, that is, multiple thyroid description data can be quickly generated through the target identification unit obtained through training according to requirements, and thus the accuracy and reliability of thyroid anomaly identification are improved. 本申请提供的一种甲状腺异常识别方法及系统,通过范例甲状腺描述数据对应的甲状腺描述特征表示以及异常描述特征表示得到潜在特征表达,然后通过该潜在特征表达对待训练识别单元进行迭代训练,训练得到目标识别单元,该目标识别单元即可通过输入的识别数据生成目标甲状腺描述数据,即,可以根据需求通过训练得到的目标识别单元快速生成多个甲状腺描述数据,从而提升甲状腺异常识别的准确性和可靠</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118658609A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Thyroid anomaly identification method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZOU%20XUMING&rft.date=2024-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118658609A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true