Feature marker detection method and device for iron and steel industry

The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GENG MINGSHAN, ZHOU YANG, KONG CHUISHUO, GE JIAQI, CHEN JIA, ZHANG XIAOFENG, DOU GANG, ZHAO RIDONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GENG MINGSHAN
ZHOU YANG
KONG CHUISHUO
GE JIAQI
CHEN JIA
ZHANG XIAOFENG
DOU GANG
ZHAO RIDONG
description The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118644708A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118644708A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118644708A3</originalsourceid><addsrcrecordid>eNrjZHBzS00sKS1KVchNLMpOLVJISS1JTS7JzM9TyE0tychPUUjMSwEKlmUmpyqk5RcpZBYBpUBixSWpqTkKmXkppcUlRZU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0MLMxMTcwMLRmBg1AB0wM30</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Feature marker detection method and device for iron and steel industry</title><source>esp@cenet</source><creator>GENG MINGSHAN ; ZHOU YANG ; KONG CHUISHUO ; GE JIAQI ; CHEN JIA ; ZHANG XIAOFENG ; DOU GANG ; ZHAO RIDONG</creator><creatorcontrib>GENG MINGSHAN ; ZHOU YANG ; KONG CHUISHUO ; GE JIAQI ; CHEN JIA ; ZHANG XIAOFENG ; DOU GANG ; ZHAO RIDONG</creatorcontrib><description>The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240913&amp;DB=EPODOC&amp;CC=CN&amp;NR=118644708A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240913&amp;DB=EPODOC&amp;CC=CN&amp;NR=118644708A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GENG MINGSHAN</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>KONG CHUISHUO</creatorcontrib><creatorcontrib>GE JIAQI</creatorcontrib><creatorcontrib>CHEN JIA</creatorcontrib><creatorcontrib>ZHANG XIAOFENG</creatorcontrib><creatorcontrib>DOU GANG</creatorcontrib><creatorcontrib>ZHAO RIDONG</creatorcontrib><title>Feature marker detection method and device for iron and steel industry</title><description>The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzS00sKS1KVchNLMpOLVJISS1JTS7JzM9TyE0tychPUUjMSwEKlmUmpyqk5RcpZBYBpUBixSWpqTkKmXkppcUlRZU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0MLMxMTcwMLRmBg1AB0wM30</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>GENG MINGSHAN</creator><creator>ZHOU YANG</creator><creator>KONG CHUISHUO</creator><creator>GE JIAQI</creator><creator>CHEN JIA</creator><creator>ZHANG XIAOFENG</creator><creator>DOU GANG</creator><creator>ZHAO RIDONG</creator><scope>EVB</scope></search><sort><creationdate>20240913</creationdate><title>Feature marker detection method and device for iron and steel industry</title><author>GENG MINGSHAN ; ZHOU YANG ; KONG CHUISHUO ; GE JIAQI ; CHEN JIA ; ZHANG XIAOFENG ; DOU GANG ; ZHAO RIDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118644708A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GENG MINGSHAN</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>KONG CHUISHUO</creatorcontrib><creatorcontrib>GE JIAQI</creatorcontrib><creatorcontrib>CHEN JIA</creatorcontrib><creatorcontrib>ZHANG XIAOFENG</creatorcontrib><creatorcontrib>DOU GANG</creatorcontrib><creatorcontrib>ZHAO RIDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GENG MINGSHAN</au><au>ZHOU YANG</au><au>KONG CHUISHUO</au><au>GE JIAQI</au><au>CHEN JIA</au><au>ZHANG XIAOFENG</au><au>DOU GANG</au><au>ZHAO RIDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Feature marker detection method and device for iron and steel industry</title><date>2024-09-13</date><risdate>2024</risdate><abstract>The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118644708A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Feature marker detection method and device for iron and steel industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GENG%20MINGSHAN&rft.date=2024-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118644708A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true