Feature marker detection method and device for iron and steel industry
The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a pre...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GENG MINGSHAN ZHOU YANG KONG CHUISHUO GE JIAQI CHEN JIA ZHANG XIAOFENG DOU GANG ZHAO RIDONG |
description | The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118644708A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118644708A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118644708A3</originalsourceid><addsrcrecordid>eNrjZHBzS00sKS1KVchNLMpOLVJISS1JTS7JzM9TyE0tychPUUjMSwEKlmUmpyqk5RcpZBYBpUBixSWpqTkKmXkppcUlRZU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0MLMxMTcwMLRmBg1AB0wM30</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Feature marker detection method and device for iron and steel industry</title><source>esp@cenet</source><creator>GENG MINGSHAN ; ZHOU YANG ; KONG CHUISHUO ; GE JIAQI ; CHEN JIA ; ZHANG XIAOFENG ; DOU GANG ; ZHAO RIDONG</creator><creatorcontrib>GENG MINGSHAN ; ZHOU YANG ; KONG CHUISHUO ; GE JIAQI ; CHEN JIA ; ZHANG XIAOFENG ; DOU GANG ; ZHAO RIDONG</creatorcontrib><description>The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240913&DB=EPODOC&CC=CN&NR=118644708A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240913&DB=EPODOC&CC=CN&NR=118644708A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GENG MINGSHAN</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>KONG CHUISHUO</creatorcontrib><creatorcontrib>GE JIAQI</creatorcontrib><creatorcontrib>CHEN JIA</creatorcontrib><creatorcontrib>ZHANG XIAOFENG</creatorcontrib><creatorcontrib>DOU GANG</creatorcontrib><creatorcontrib>ZHAO RIDONG</creatorcontrib><title>Feature marker detection method and device for iron and steel industry</title><description>The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzS00sKS1KVchNLMpOLVJISS1JTS7JzM9TyE0tychPUUjMSwEKlmUmpyqk5RcpZBYBpUBixSWpqTkKmXkppcUlRZU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0MLMxMTcwMLRmBg1AB0wM30</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>GENG MINGSHAN</creator><creator>ZHOU YANG</creator><creator>KONG CHUISHUO</creator><creator>GE JIAQI</creator><creator>CHEN JIA</creator><creator>ZHANG XIAOFENG</creator><creator>DOU GANG</creator><creator>ZHAO RIDONG</creator><scope>EVB</scope></search><sort><creationdate>20240913</creationdate><title>Feature marker detection method and device for iron and steel industry</title><author>GENG MINGSHAN ; ZHOU YANG ; KONG CHUISHUO ; GE JIAQI ; CHEN JIA ; ZHANG XIAOFENG ; DOU GANG ; ZHAO RIDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118644708A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GENG MINGSHAN</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>KONG CHUISHUO</creatorcontrib><creatorcontrib>GE JIAQI</creatorcontrib><creatorcontrib>CHEN JIA</creatorcontrib><creatorcontrib>ZHANG XIAOFENG</creatorcontrib><creatorcontrib>DOU GANG</creatorcontrib><creatorcontrib>ZHAO RIDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GENG MINGSHAN</au><au>ZHOU YANG</au><au>KONG CHUISHUO</au><au>GE JIAQI</au><au>CHEN JIA</au><au>ZHANG XIAOFENG</au><au>DOU GANG</au><au>ZHAO RIDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Feature marker detection method and device for iron and steel industry</title><date>2024-09-13</date><risdate>2024</risdate><abstract>The invention provides a feature marker detection method and device for the iron and steel industry, and can be applied to the technical field of iron and steel metallurgy. According to the specific implementation scheme, the method comprises the steps of obtaining feature marker image data in a preset scene, performing preprocessing operation on the feature marker image data, and constructing a feature marker data set of the iron and steel industry; constructing an improved YOLOv5 neural network model, and training the improved YOLOv5 neural network model based on the feature marker data set and a K-Means + + clustering algorithm until the improved YOLOv5 neural network model meets a preset model evaluation index, and obtaining a trained feature marker detection model; and deploying the feature marker detection model in the preset scene, detecting a to-be-detected feature marker image in the preset scene based on the feature marker detection model, and determining a feature marker type corresponding to the t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118644708A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Feature marker detection method and device for iron and steel industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GENG%20MINGSHAN&rft.date=2024-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118644708A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |