Multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning

The invention discloses a multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning. Comprising the following steps: step 1, establishing a multi-unmanned aerial vehicle auxiliary communication system model; 2, modeling an optimization problem a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHI LONG, LI JUN, LUO YANYUE, QIAN YUWEN, WANG ZHE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHI LONG
LI JUN
LUO YANYUE
QIAN YUWEN
WANG ZHE
description The invention discloses a multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning. Comprising the following steps: step 1, establishing a multi-unmanned aerial vehicle auxiliary communication system model; 2, modeling an optimization problem as a Markov decision process; step 3, designing a meta-reviewer algorithm based on the behavior-reviewer architecture; and step 4, enabling multiple unmanned aerial vehicles to interact with the environment by using an asynchronous parallel structure, and iteratively updating network parameters. According to the invention, cooperative coverage can be carried out on the ground users under the condition of ensuring the minimum throughput required by the ground users through the unmanned aerial vehicle group, and the planning efficiency and the service quality of the unmanned aerial vehicle base station are improved. 本发明公开了一种基于元强化学习的多无人机基站协同路径规划方法。包括步骤:步骤1、建立多无人机辅助通信系统模型;步骤2、将优化问题建模为马尔可夫决策过程;步骤3、基于行为者-评论家的架构,设计元评论家算法;步
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118642366A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118642366A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118642366A3</originalsourceid><addsrcrecordid>eNqNyzEOwjAQBMA0FAj4w_GAFCEookURiAYqenQ4G2LJOVv2Je_HIB5AtbvS7LII18mpLScZWQQdMaJlRzMGaxzoyQmUlNV6IeN9QMx9BgXWgYLLJysvGqGD7766oyzzZoqw0vtoMEKUHDh-7LpY9OwSNr9cFdvz6d5eSgT_QApsINBHe6uqQ7Pf1U1zrP8xb51cQ-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning</title><source>esp@cenet</source><creator>SHI LONG ; LI JUN ; LUO YANYUE ; QIAN YUWEN ; WANG ZHE</creator><creatorcontrib>SHI LONG ; LI JUN ; LUO YANYUE ; QIAN YUWEN ; WANG ZHE</creatorcontrib><description>The invention discloses a multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning. Comprising the following steps: step 1, establishing a multi-unmanned aerial vehicle auxiliary communication system model; 2, modeling an optimization problem as a Markov decision process; step 3, designing a meta-reviewer algorithm based on the behavior-reviewer architecture; and step 4, enabling multiple unmanned aerial vehicles to interact with the environment by using an asynchronous parallel structure, and iteratively updating network parameters. According to the invention, cooperative coverage can be carried out on the ground users under the condition of ensuring the minimum throughput required by the ground users through the unmanned aerial vehicle group, and the planning efficiency and the service quality of the unmanned aerial vehicle base station are improved. 本发明公开了一种基于元强化学习的多无人机基站协同路径规划方法。包括步骤:步骤1、建立多无人机辅助通信系统模型;步骤2、将优化问题建模为马尔可夫决策过程;步骤3、基于行为者-评论家的架构,设计元评论家算法;步</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240913&amp;DB=EPODOC&amp;CC=CN&amp;NR=118642366A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240913&amp;DB=EPODOC&amp;CC=CN&amp;NR=118642366A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI LONG</creatorcontrib><creatorcontrib>LI JUN</creatorcontrib><creatorcontrib>LUO YANYUE</creatorcontrib><creatorcontrib>QIAN YUWEN</creatorcontrib><creatorcontrib>WANG ZHE</creatorcontrib><title>Multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning</title><description>The invention discloses a multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning. Comprising the following steps: step 1, establishing a multi-unmanned aerial vehicle auxiliary communication system model; 2, modeling an optimization problem as a Markov decision process; step 3, designing a meta-reviewer algorithm based on the behavior-reviewer architecture; and step 4, enabling multiple unmanned aerial vehicles to interact with the environment by using an asynchronous parallel structure, and iteratively updating network parameters. According to the invention, cooperative coverage can be carried out on the ground users under the condition of ensuring the minimum throughput required by the ground users through the unmanned aerial vehicle group, and the planning efficiency and the service quality of the unmanned aerial vehicle base station are improved. 本发明公开了一种基于元强化学习的多无人机基站协同路径规划方法。包括步骤:步骤1、建立多无人机辅助通信系统模型;步骤2、将优化问题建模为马尔可夫决策过程;步骤3、基于行为者-评论家的架构,设计元评论家算法;步</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEOwjAQBMA0FAj4w_GAFCEookURiAYqenQ4G2LJOVv2Je_HIB5AtbvS7LII18mpLScZWQQdMaJlRzMGaxzoyQmUlNV6IeN9QMx9BgXWgYLLJysvGqGD7766oyzzZoqw0vtoMEKUHDh-7LpY9OwSNr9cFdvz6d5eSgT_QApsINBHe6uqQ7Pf1U1zrP8xb51cQ-Q</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>SHI LONG</creator><creator>LI JUN</creator><creator>LUO YANYUE</creator><creator>QIAN YUWEN</creator><creator>WANG ZHE</creator><scope>EVB</scope></search><sort><creationdate>20240913</creationdate><title>Multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning</title><author>SHI LONG ; LI JUN ; LUO YANYUE ; QIAN YUWEN ; WANG ZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118642366A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI LONG</creatorcontrib><creatorcontrib>LI JUN</creatorcontrib><creatorcontrib>LUO YANYUE</creatorcontrib><creatorcontrib>QIAN YUWEN</creatorcontrib><creatorcontrib>WANG ZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI LONG</au><au>LI JUN</au><au>LUO YANYUE</au><au>QIAN YUWEN</au><au>WANG ZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning</title><date>2024-09-13</date><risdate>2024</risdate><abstract>The invention discloses a multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning. Comprising the following steps: step 1, establishing a multi-unmanned aerial vehicle auxiliary communication system model; 2, modeling an optimization problem as a Markov decision process; step 3, designing a meta-reviewer algorithm based on the behavior-reviewer architecture; and step 4, enabling multiple unmanned aerial vehicles to interact with the environment by using an asynchronous parallel structure, and iteratively updating network parameters. According to the invention, cooperative coverage can be carried out on the ground users under the condition of ensuring the minimum throughput required by the ground users through the unmanned aerial vehicle group, and the planning efficiency and the service quality of the unmanned aerial vehicle base station are improved. 本发明公开了一种基于元强化学习的多无人机基站协同路径规划方法。包括步骤:步骤1、建立多无人机辅助通信系统模型;步骤2、将优化问题建模为马尔可夫决策过程;步骤3、基于行为者-评论家的架构,设计元评论家算法;步</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118642366A
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Multi-unmanned aerial vehicle base station cooperative path planning method based on meta reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20LONG&rft.date=2024-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118642366A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true