Roadway surface crack detection method based on improved FCN network

The invention relates to the field of crack image segmentation and semantic segmentation, and aims to solve the problems that most of the existing segmentation methods based on deep learning mainly utilize an FCN network structure or a SegNet network structure, the receptive field of the network is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO JUMIN, REN JIAXIN, JIA HUAYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO JUMIN
REN JIAXIN
JIA HUAYU
description The invention relates to the field of crack image segmentation and semantic segmentation, and aims to solve the problems that most of the existing segmentation methods based on deep learning mainly utilize an FCN network structure or a SegNet network structure, the receptive field of the network is relatively small, rich context information cannot be obtained, and improvement of crack segmentation precision is affected. The invention provides a tunnel surface crack detection method based on an improved FCN network, and the method comprises the steps: taking the FCN network as a basic network model, capturing the context information in an image through combining with cavity convolution and a channel attention module, further determining the position of a crack boundary, improving the influence of noise and shielding on crack segmentation, and improving the detection precision of a tunnel surface crack. The method is advantaged in that tunnel crack segmentation accuracy is improved, tunnel surface crack automat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118629041A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118629041A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118629041A3</originalsourceid><addsrcrecordid>eNrjZHAJyk9MKU-sVCguLUpLTE5VSC5KTM5WSEktSU0uyczPU8hNLcnIT1FISixOTVEA8jNzC4ryy4BsN2c_hbzUkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXAA0F6gy3tnP0NDCzMjSwMTQ0ZgYNQCTCjJy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Roadway surface crack detection method based on improved FCN network</title><source>esp@cenet</source><creator>ZHAO JUMIN ; REN JIAXIN ; JIA HUAYU</creator><creatorcontrib>ZHAO JUMIN ; REN JIAXIN ; JIA HUAYU</creatorcontrib><description>The invention relates to the field of crack image segmentation and semantic segmentation, and aims to solve the problems that most of the existing segmentation methods based on deep learning mainly utilize an FCN network structure or a SegNet network structure, the receptive field of the network is relatively small, rich context information cannot be obtained, and improvement of crack segmentation precision is affected. The invention provides a tunnel surface crack detection method based on an improved FCN network, and the method comprises the steps: taking the FCN network as a basic network model, capturing the context information in an image through combining with cavity convolution and a channel attention module, further determining the position of a crack boundary, improving the influence of noise and shielding on crack segmentation, and improving the detection precision of a tunnel surface crack. The method is advantaged in that tunnel crack segmentation accuracy is improved, tunnel surface crack automat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=CN&amp;NR=118629041A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=CN&amp;NR=118629041A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO JUMIN</creatorcontrib><creatorcontrib>REN JIAXIN</creatorcontrib><creatorcontrib>JIA HUAYU</creatorcontrib><title>Roadway surface crack detection method based on improved FCN network</title><description>The invention relates to the field of crack image segmentation and semantic segmentation, and aims to solve the problems that most of the existing segmentation methods based on deep learning mainly utilize an FCN network structure or a SegNet network structure, the receptive field of the network is relatively small, rich context information cannot be obtained, and improvement of crack segmentation precision is affected. The invention provides a tunnel surface crack detection method based on an improved FCN network, and the method comprises the steps: taking the FCN network as a basic network model, capturing the context information in an image through combining with cavity convolution and a channel attention module, further determining the position of a crack boundary, improving the influence of noise and shielding on crack segmentation, and improving the detection precision of a tunnel surface crack. The method is advantaged in that tunnel crack segmentation accuracy is improved, tunnel surface crack automat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAJyk9MKU-sVCguLUpLTE5VSC5KTM5WSEktSU0uyczPU8hNLcnIT1FISixOTVEA8jNzC4ryy4BsN2c_hbzUkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXAA0F6gy3tnP0NDCzMjSwMTQ0ZgYNQCTCjJy</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>ZHAO JUMIN</creator><creator>REN JIAXIN</creator><creator>JIA HUAYU</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Roadway surface crack detection method based on improved FCN network</title><author>ZHAO JUMIN ; REN JIAXIN ; JIA HUAYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118629041A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO JUMIN</creatorcontrib><creatorcontrib>REN JIAXIN</creatorcontrib><creatorcontrib>JIA HUAYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO JUMIN</au><au>REN JIAXIN</au><au>JIA HUAYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Roadway surface crack detection method based on improved FCN network</title><date>2024-09-10</date><risdate>2024</risdate><abstract>The invention relates to the field of crack image segmentation and semantic segmentation, and aims to solve the problems that most of the existing segmentation methods based on deep learning mainly utilize an FCN network structure or a SegNet network structure, the receptive field of the network is relatively small, rich context information cannot be obtained, and improvement of crack segmentation precision is affected. The invention provides a tunnel surface crack detection method based on an improved FCN network, and the method comprises the steps: taking the FCN network as a basic network model, capturing the context information in an image through combining with cavity convolution and a channel attention module, further determining the position of a crack boundary, improving the influence of noise and shielding on crack segmentation, and improving the detection precision of a tunnel surface crack. The method is advantaged in that tunnel crack segmentation accuracy is improved, tunnel surface crack automat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118629041A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Roadway surface crack detection method based on improved FCN network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20JUMIN&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118629041A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true