Contract term risk identification system based on neural network natural language processing technology
The invention discloses a contract term risk identification system based on a neural network natural language processing technology, and relates to the field of risk identification systems, and the system comprises a contract identification module which carries out the recognition of a contract, and...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG ZHENGYU WANG ZEYING XIA WEIQI JIN ZE LU ZEPENG LI MULIN HOU JINGCHENG ZHAO ZINUO |
description | The invention discloses a contract term risk identification system based on a neural network natural language processing technology, and relates to the field of risk identification systems, and the system comprises a contract identification module which carries out the recognition of a contract, and obtains the term content of at least one contract term; the contract term splitting module is used for splitting the recognized terms in the contract and comparing the obtained contract terms with standard contract terms; the contract term comparison module is used for comparing the split contract terms with standard contract terms, performing semantic analysis on the contract terms after comparison, and determining the types of the split contract terms; and the contract clause analysis module retrieves keywords in contract clauses, the risk assessment module is arranged, so that the parties can conveniently convert cooperation into simplicity, simplicity and no slack, and contract conclusion becomes efficient and |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118627895A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118627895A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118627895A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAHvxIOof1gd4qKLWoxTFkyfvZU23MTTdhOwW6e8N4gM8DQPDzAtbB9aERkEpDZCc9OBaYnWdM6guMMgkSgM8UaiF7ExjQp-h75B6YNSve2Q7oiWIKRgScWzz07w4-GCnZTHr0AutflwU6-vlUd82FENDEtFQHjb1vSyrw_ZYnfbn3T_NB0ZYQSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Contract term risk identification system based on neural network natural language processing technology</title><source>esp@cenet</source><creator>ZHANG ZHENGYU ; WANG ZEYING ; XIA WEIQI ; JIN ZE ; LU ZEPENG ; LI MULIN ; HOU JINGCHENG ; ZHAO ZINUO</creator><creatorcontrib>ZHANG ZHENGYU ; WANG ZEYING ; XIA WEIQI ; JIN ZE ; LU ZEPENG ; LI MULIN ; HOU JINGCHENG ; ZHAO ZINUO</creatorcontrib><description>The invention discloses a contract term risk identification system based on a neural network natural language processing technology, and relates to the field of risk identification systems, and the system comprises a contract identification module which carries out the recognition of a contract, and obtains the term content of at least one contract term; the contract term splitting module is used for splitting the recognized terms in the contract and comparing the obtained contract terms with standard contract terms; the contract term comparison module is used for comparing the split contract terms with standard contract terms, performing semantic analysis on the contract terms after comparison, and determining the types of the split contract terms; and the contract clause analysis module retrieves keywords in contract clauses, the risk assessment module is arranged, so that the parties can conveniently convert cooperation into simplicity, simplicity and no slack, and contract conclusion becomes efficient and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=CN&NR=118627895A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=CN&NR=118627895A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHENGYU</creatorcontrib><creatorcontrib>WANG ZEYING</creatorcontrib><creatorcontrib>XIA WEIQI</creatorcontrib><creatorcontrib>JIN ZE</creatorcontrib><creatorcontrib>LU ZEPENG</creatorcontrib><creatorcontrib>LI MULIN</creatorcontrib><creatorcontrib>HOU JINGCHENG</creatorcontrib><creatorcontrib>ZHAO ZINUO</creatorcontrib><title>Contract term risk identification system based on neural network natural language processing technology</title><description>The invention discloses a contract term risk identification system based on a neural network natural language processing technology, and relates to the field of risk identification systems, and the system comprises a contract identification module which carries out the recognition of a contract, and obtains the term content of at least one contract term; the contract term splitting module is used for splitting the recognized terms in the contract and comparing the obtained contract terms with standard contract terms; the contract term comparison module is used for comparing the split contract terms with standard contract terms, performing semantic analysis on the contract terms after comparison, and determining the types of the split contract terms; and the contract clause analysis module retrieves keywords in contract clauses, the risk assessment module is arranged, so that the parties can conveniently convert cooperation into simplicity, simplicity and no slack, and contract conclusion becomes efficient and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQAHvxIOof1gd4qKLWoxTFkyfvZU23MTTdhOwW6e8N4gM8DQPDzAtbB9aERkEpDZCc9OBaYnWdM6guMMgkSgM8UaiF7ExjQp-h75B6YNSve2Q7oiWIKRgScWzz07w4-GCnZTHr0AutflwU6-vlUd82FENDEtFQHjb1vSyrw_ZYnfbn3T_NB0ZYQSs</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>ZHANG ZHENGYU</creator><creator>WANG ZEYING</creator><creator>XIA WEIQI</creator><creator>JIN ZE</creator><creator>LU ZEPENG</creator><creator>LI MULIN</creator><creator>HOU JINGCHENG</creator><creator>ZHAO ZINUO</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Contract term risk identification system based on neural network natural language processing technology</title><author>ZHANG ZHENGYU ; WANG ZEYING ; XIA WEIQI ; JIN ZE ; LU ZEPENG ; LI MULIN ; HOU JINGCHENG ; ZHAO ZINUO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118627895A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHENGYU</creatorcontrib><creatorcontrib>WANG ZEYING</creatorcontrib><creatorcontrib>XIA WEIQI</creatorcontrib><creatorcontrib>JIN ZE</creatorcontrib><creatorcontrib>LU ZEPENG</creatorcontrib><creatorcontrib>LI MULIN</creatorcontrib><creatorcontrib>HOU JINGCHENG</creatorcontrib><creatorcontrib>ZHAO ZINUO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHENGYU</au><au>WANG ZEYING</au><au>XIA WEIQI</au><au>JIN ZE</au><au>LU ZEPENG</au><au>LI MULIN</au><au>HOU JINGCHENG</au><au>ZHAO ZINUO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Contract term risk identification system based on neural network natural language processing technology</title><date>2024-09-10</date><risdate>2024</risdate><abstract>The invention discloses a contract term risk identification system based on a neural network natural language processing technology, and relates to the field of risk identification systems, and the system comprises a contract identification module which carries out the recognition of a contract, and obtains the term content of at least one contract term; the contract term splitting module is used for splitting the recognized terms in the contract and comparing the obtained contract terms with standard contract terms; the contract term comparison module is used for comparing the split contract terms with standard contract terms, performing semantic analysis on the contract terms after comparison, and determining the types of the split contract terms; and the contract clause analysis module retrieves keywords in contract clauses, the risk assessment module is arranged, so that the parties can conveniently convert cooperation into simplicity, simplicity and no slack, and contract conclusion becomes efficient and</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118627895A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Contract term risk identification system based on neural network natural language processing technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHENGYU&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118627895A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |